On Distance and Strong Metric Dimension of the Modular Product

The modular product \(G\diamond H\) of graphs \(G\) and \(H\) is a graph on vertex set \(V(G)\times V(H)\). Two vertices \((g,h)\) and \((g',h')\) of \(G\diamond H\) are adjacent if \(g=g'\) and \(hh'\in E(H)\), or \(gg'\in E(G)\) and \(h=h'\), or \(gg'\in E(G)\) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Kang, Cong X, Kelenc, Aleksander, Peterin, Iztok, Yi, Eunjeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modular product \(G\diamond H\) of graphs \(G\) and \(H\) is a graph on vertex set \(V(G)\times V(H)\). Two vertices \((g,h)\) and \((g',h')\) of \(G\diamond H\) are adjacent if \(g=g'\) and \(hh'\in E(H)\), or \(gg'\in E(G)\) and \(h=h'\), or \(gg'\in E(G)\) and \(hh'\in E(H)\), or (for \(g\neq g'\) and \(h\neq h'\)) \(gg'\notin E(G)\) and \(hh'\notin E(H)\). We derive the distance formula for the modular product and then describe all edges of the strong resolving graph of \(G\diamond H\). This is then used to obtain the strong metric dimension of the modular product on several, infinite families of graphs.
ISSN:2331-8422