Some integral operators acting on \(H^{\infty}\)
Let \(f\) and \(g\) be analytic on the unit disc \(\mathbb{D}\). The integral operator \(T_g\) is defined by \( T_g f(z) = \int_0^z f(t)g'(t)\,dt\), \(z \in \mathbb{D}\). The problem considered is characterizing those symbols \(g\) for which \(T_g\) acting on \(H^\infty\), the space of bounded...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(f\) and \(g\) be analytic on the unit disc \(\mathbb{D}\). The integral operator \(T_g\) is defined by \( T_g f(z) = \int_0^z f(t)g'(t)\,dt\), \(z \in \mathbb{D}\). The problem considered is characterizing those symbols \(g\) for which \(T_g\) acting on \(H^\infty\), the space of bounded analytic functions on \(\mathbb{D}\), is bounded or compact. When the symbol is univalent, these become questions in univalent function theory. The corresponding problems for the companion operator, \( S_g f(z)= \int_0^z f'(t)g(t)\, dt\), acting on \(H^\infty\) are also studied. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2402.06774 |