The Redei-Berge Hopf algebra of digraphs
In a series of recent talks Richard Stanley introduced a symmetric function associated to digraphs called the Redei-Berge symmetric function. This symmetric function enumerates descent sets of permutations corresponding to digraphs. We show that such constructed symmetric function arises from a suit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a series of recent talks Richard Stanley introduced a symmetric function associated to digraphs called the Redei-Berge symmetric function. This symmetric function enumerates descent sets of permutations corresponding to digraphs. We show that such constructed symmetric function arises from a suitable structure of combinatorial Hopf algebra on digraphs. The induced Redei-Berge polynomial satisfies the deletion-contraction property which makes it similar to the chromatic polynomial. The Berge's classical result on the number of Hamiltonian paths in digraphs is a consequence of the reciprocity formula for the Redei-Berge polynomial. |
---|---|
ISSN: | 2331-8422 |