The Redei-Berge Hopf algebra of digraphs

In a series of recent talks Richard Stanley introduced a symmetric function associated to digraphs called the Redei-Berge symmetric function. This symmetric function enumerates descent sets of permutations corresponding to digraphs. We show that such constructed symmetric function arises from a suit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Grujić, Vladimir, Stojadinović, Tanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a series of recent talks Richard Stanley introduced a symmetric function associated to digraphs called the Redei-Berge symmetric function. This symmetric function enumerates descent sets of permutations corresponding to digraphs. We show that such constructed symmetric function arises from a suitable structure of combinatorial Hopf algebra on digraphs. The induced Redei-Berge polynomial satisfies the deletion-contraction property which makes it similar to the chromatic polynomial. The Berge's classical result on the number of Hamiltonian paths in digraphs is a consequence of the reciprocity formula for the Redei-Berge polynomial.
ISSN:2331-8422