GA-BP Optimization Using Hybrid Machine Learning Algorithm for Thermopile Temperature Compensation

Thermoelectric pile, which uses non-contact infrared temperature measurement principle, is widely used in various precision temperature measuring instruments. This paper analyzes environmental temperature's influence on thermoelectric piles' measurement accuracy and proposes a environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information technology and web engineering 2024-01, Vol.19 (1), p.1-14
Hauptverfasser: Aifen, Ye, Shuwan, Lin, Huan, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermoelectric pile, which uses non-contact infrared temperature measurement principle, is widely used in various precision temperature measuring instruments. This paper analyzes environmental temperature's influence on thermoelectric piles' measurement accuracy and proposes a environment temperature compensation based on GA-BP (Genetic Algorithm-Back Propagation) neural network. The GA algorithm makes up for the slow iterative speed and easy to fall into local optimization of BP algorithm. The experimental simulation results show that environment temperature compensation based on GA-BP can accurately correct the measurement error caused by environmental temperature and other factors.
ISSN:1554-1045
1554-1053
DOI:10.4018/IJITWE.337491