Interlacement limit of a stopped random walk trace on a torus

We consider a simple random walk on $\mathbb{Z}^d$ started at the origin and stopped on its first exit time from $({-}L,L)^d \cap \mathbb{Z}^d$ . Write L in the form $L = m N$ with $m = m(N)$ and N an integer going to infinity in such a way that $L^2 \sim A N^d$ for some real constant $A \gt 0$ . Ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2024-03, Vol.56 (1), p.354-388
Hauptverfasser: Járai, Antal A., Sun, Minwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a simple random walk on $\mathbb{Z}^d$ started at the origin and stopped on its first exit time from $({-}L,L)^d \cap \mathbb{Z}^d$ . Write L in the form $L = m N$ with $m = m(N)$ and N an integer going to infinity in such a way that $L^2 \sim A N^d$ for some real constant $A \gt 0$ . Our main result is that for $d \ge 3$ , the projection of the stopped trajectory to the N-torus locally converges, away from the origin, to an interlacement process at level $A d \sigma_1$ , where $\sigma_1$ is the exit time of a Brownian motion from the unit cube $({-}1,1)^d$ that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2023.24