Interlacement limit of a stopped random walk trace on a torus
We consider a simple random walk on $\mathbb{Z}^d$ started at the origin and stopped on its first exit time from $({-}L,L)^d \cap \mathbb{Z}^d$ . Write L in the form $L = m N$ with $m = m(N)$ and N an integer going to infinity in such a way that $L^2 \sim A N^d$ for some real constant $A \gt 0$ . Ou...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2024-03, Vol.56 (1), p.354-388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a simple random walk on
$\mathbb{Z}^d$
started at the origin and stopped on its first exit time from
$({-}L,L)^d \cap \mathbb{Z}^d$
. Write L in the form
$L = m N$
with
$m = m(N)$
and N an integer going to infinity in such a way that
$L^2 \sim A N^d$
for some real constant
$A \gt 0$
. Our main result is that for
$d \ge 3$
, the projection of the stopped trajectory to the N-torus locally converges, away from the origin, to an interlacement process at level
$A d \sigma_1$
, where
$\sigma_1$
is the exit time of a Brownian motion from the unit cube
$({-}1,1)^d$
that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009). |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/apr.2023.24 |