KP reductions and various soliton solutions to the Fokas–Lenells equation under nonzero boundary condition
In this paper, we clarify the connection of the Fokas–Lenells (FL) equation to the Kadomtsev–Petviashvili (KP)–Toda hierarchy by using a set of bilinear equations as a bridge and confirm multidark soliton solution to the FL equation previously given by Matsuno (J. Phys. A 2012 45 (475202). We also s...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2024-02, Vol.152 (2), p.734-759 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we clarify the connection of the Fokas–Lenells (FL) equation to the Kadomtsev–Petviashvili (KP)–Toda hierarchy by using a set of bilinear equations as a bridge and confirm multidark soliton solution to the FL equation previously given by Matsuno (J. Phys. A 2012 45 (475202). We also show that the set of bilinear equations in the KP–Toda hierarchy can be generated from a single discrete KP equation via Miwa transformation. Based on this finding, we further deduce the multibreather and general rogue wave solutions to the FL equation. The dynamical behaviors and patterns for both the breather and rogue wave solutions are illustrated and analyzed. |
---|---|
ISSN: | 0022-2526 1467-9590 |
DOI: | 10.1111/sapm.12654 |