Reduced-order finite element approximation based on POD for the parabolic optimal control problem
In this paper, we construct a reduced-order finite element (ROFE) method holding seldom unknowns for the parabolic optimal control problem. We apply the proper orthogonal decomposition (POD) technique to develop two unsteady systems about state and co-state approximations, which efficiently reduces...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2024-03, Vol.95 (3), p.1189-1211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we construct a reduced-order finite element (ROFE) method holding seldom unknowns for the parabolic optimal control problem. We apply the proper orthogonal decomposition (POD) technique to develop two unsteady systems about state and co-state approximations, which efficiently reduces the number of unknowns and computational costs. Optimal a priori error estimates for the state, co-state and control approximations are derived. Finally, numerical examples are presented to verify that the ROFE method is accurate and efficient for solving the parabolic optimal control problem. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-023-01605-x |