A near-infrared laser dispersion spectrometer with phase modulation for open-path methane sensing

A laser-based open-path dispersion spectrometer for measuring atmospheric methane has been developed with the goal of achieving a very simple architecture, yet enabling molecular dispersion measurements immune to optical power variation. Well-mature, near-infrared photonics components were retained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-02, Vol.95 (2)
Hauptverfasser: Wall, Thomas E., Macleod, Neil A., Weidmann, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A laser-based open-path dispersion spectrometer for measuring atmospheric methane has been developed with the goal of achieving a very simple architecture, yet enabling molecular dispersion measurements immune to optical power variation. Well-mature, near-infrared photonics components were retained to demonstrate a compact, cost-effective, and low-power consumption dispersion spectrometer. In particular, measurements immune to received optical power variations are demonstrated despite the use of only phase modulation and are supported by the development of the corresponding physical model. The instrument has been validated under laboratory conditions, finding a precision of 2.6 ppb 100 m for a 2 s measurement, and demonstrated through atmospheric measurements performed continuously over six days with an 86 m path length.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0170281