Dicarboxylic Acid‐Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short‐Wave Infrared Photodetectors

Heavy‐metal‐free III–V colloidal quantum dots (CQDs) are promising materials for solution‐processed short‐wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum‐size effect tuning of the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-02, Vol.136 (8), p.n/a
Hauptverfasser: Zhang, Yangning, Xia, Pan, Rehl, Benjamin, Parmar, Darshan H., Choi, Dongsun, Imran, Muhammad, Chen, Yiqing, Liu, Yanjiang, Vafaie, Maral, Li, Chongwen, Atan, Ozan, Pina, Joao M., Paritmongkol, Watcharaphol, Levina, Larissa, Voznyy, Oleksandr, Hoogland, Sjoerd, Sargent, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy‐metal‐free III–V colloidal quantum dots (CQDs) are promising materials for solution‐processed short‐wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum‐size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large‐diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion‐limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate‐halide co‐passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III–V CQD photodetectors in this spectral region. A post‐synthetic cascade resurfacing approach is developed for uniform indium antimonide (InSb) colloidal quantum dots (CQDs), which enables removal of native oxides, complete surface passivation, and electronic coupling among CQDs. Short‐wave infrared photodetectors fabricated using these resurfaced CQDs as the active layer achieve the highest EQE among III–V CQD photodetectors sensitive to 1400 nm light.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202316733