A shifted Chebyshev operational matrix method for pantograph‐type nonlinear fractional differential equations
In this study, we investigate and analyze an approximation of the Chebyshev polynomials for pantograph‐type fractional‐order differential equations. First, we construct the operational matrices of pantograph and Caputo fractional derivatives using Chebyshev interpolation. Then, the obtained matrices...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-03, Vol.47 (4), p.1781-1793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigate and analyze an approximation of the Chebyshev polynomials for pantograph‐type fractional‐order differential equations. First, we construct the operational matrices of pantograph and Caputo fractional derivatives using Chebyshev interpolation. Then, the obtained matrices are utilized to approximate the fractional derivative. We also provide a detailed convergence analysis in terms of the weighted square norm. Finally, we describe and discuss the results of three numerical experiments conducted to confirm the applicability and accuracy of the computational scheme. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9677 |