Notes on model theory of modules over Dedekind domains
We associate a formal power series to every pp-formula over a Dedekind domain and use it to study Ziegler spectra of Dedekind domains R and R ~ , where R a subring of R ~ , with particular interest in the case when R ~ is the integral closure of R in a finite dimensional separable field extension of...
Gespeichert in:
Veröffentlicht in: | Bollettino della Unione matematica italiana (2008) 2024-03, Vol.17 (1), p.11-39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We associate a formal power series to every pp-formula over a Dedekind domain and use it to study Ziegler spectra of Dedekind domains
R
and
R
~
,
where
R
a subring of
R
~
, with particular interest in the case when
R
~
is the integral closure of
R
in a finite dimensional separable field extension of the field of fractions of
R
. |
---|---|
ISSN: | 1972-6724 2198-2759 |
DOI: | 10.1007/s40574-023-00372-w |