3-Manifolds and VOA Characters

By studying the properties of q -series Z ^ -invariants, we develop a dictionary between 3-manifolds and vertex algebras. In particular, we generalize previously known entries in this dictionary to Lie groups of higher rank, to 3-manifolds with toral boundaries, and to BPS partition functions with l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-02, Vol.405 (2), Article 44
Hauptverfasser: Cheng, Miranda C. N., Chun, Sungbong, Feigin, Boris, Ferrari, Francesca, Gukov, Sergei, Harrison, Sarah M., Passaro, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By studying the properties of q -series Z ^ -invariants, we develop a dictionary between 3-manifolds and vertex algebras. In particular, we generalize previously known entries in this dictionary to Lie groups of higher rank, to 3-manifolds with toral boundaries, and to BPS partition functions with line operators. This provides a new physical realization of logarithmic vertex algebras in the framework of the 3d-3d correspondence and opens new avenues for their future study. For example, we illustrate how invoking a knot-quiver correspondence for Z ^ -invariants leads to many infinite families of new fermionic formulae for VOA characters.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-023-04889-1