Reciprocal distance signless Laplacian spread of connected graphs
Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , … , v n } . Recall that the reciprocal distance signless Laplacian matrix of G is defined to be R Q ( G ) = R T ( G ) + R D ( G ) , where RD ( G ) is the reciprocal distance matrix, and R T i is the reciprocal distance degree of vert...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2024-03, Vol.55 (1), p.400-411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 1 |
container_start_page | 400 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 55 |
creator | Ma, Yuzheng Gao, Yubin Shao, Yanling |
description | Let
G
be a connected graph with vertex set
V
(
G
)
=
{
v
1
,
v
2
,
…
,
v
n
}
. Recall that the reciprocal distance signless Laplacian matrix of
G
is defined to be
R
Q
(
G
)
=
R
T
(
G
)
+
R
D
(
G
)
, where
RD
(
G
) is the reciprocal distance matrix, and
R
T
i
is the reciprocal distance degree of vertex
v
i
for
i
=
1
,
2
,
…
,
n
,
R
T
(
G
)
=
diag
(
R
T
1
,
R
T
2
,
…
,
R
T
n
)
. Denote by
μ
1
(
R
Q
(
G
)
)
and
μ
n
(
R
Q
(
G
)
)
the largest eigenvalue and the least eigenvalue of
RQ
(
G
), respectively. The reciprocal distance signless Laplacian spread of
G
is defined as
S
RQ
(
G
)
=
μ
1
(
R
Q
(
G
)
)
-
μ
n
(
R
Q
(
G
)
)
. In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph. |
doi_str_mv | 10.1007/s13226-023-00373-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2924290873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2924290873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c9d61913b2037b2730029cd09caad855056de314b54241b87572e48cb8d807b13</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwOUAocNxv_JZuYGD0TCrR2U2mF7sFvL1oTb55mDu-9efND6JLCNQWQN5lyxmoCjBMALjmRR2gFWgoiq1oclx2oJkIodYrOct4D1By0XqHNc3D9lEZnB-z7PNvoAs59F4eQM97ZabCutxHnKQXr8dhiN8YY3Bw87pKd3vI5OmntkMPF71yj17vbl-0D2T3dP243O-KYhJk47WuqKW9Y6dcwyQGYdh60s9YrIUDUPnBaNaJiFW2UFJKFSrlGeQWyoXyNrpbc0vbjEPJs9uMhxXLSMM0qpkFJXlRsUbk05pxCa6bUv9v0aSiYb1RmQWUKKvODyshi4oupfNnHLqS_6H9cX-ggapA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924290873</pqid></control><display><type>article</type><title>Reciprocal distance signless Laplacian spread of connected graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Yuzheng ; Gao, Yubin ; Shao, Yanling</creator><creatorcontrib>Ma, Yuzheng ; Gao, Yubin ; Shao, Yanling</creatorcontrib><description>Let
G
be a connected graph with vertex set
V
(
G
)
=
{
v
1
,
v
2
,
…
,
v
n
}
. Recall that the reciprocal distance signless Laplacian matrix of
G
is defined to be
R
Q
(
G
)
=
R
T
(
G
)
+
R
D
(
G
)
, where
RD
(
G
) is the reciprocal distance matrix, and
R
T
i
is the reciprocal distance degree of vertex
v
i
for
i
=
1
,
2
,
…
,
n
,
R
T
(
G
)
=
diag
(
R
T
1
,
R
T
2
,
…
,
R
T
n
)
. Denote by
μ
1
(
R
Q
(
G
)
)
and
μ
n
(
R
Q
(
G
)
)
the largest eigenvalue and the least eigenvalue of
RQ
(
G
), respectively. The reciprocal distance signless Laplacian spread of
G
is defined as
S
RQ
(
G
)
=
μ
1
(
R
Q
(
G
)
)
-
μ
n
(
R
Q
(
G
)
)
. In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-023-00373-7</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Research ; Vertex sets</subject><ispartof>Indian journal of pure and applied mathematics, 2024-03, Vol.55 (1), p.400-411</ispartof><rights>The Indian National Science Academy 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c9d61913b2037b2730029cd09caad855056de314b54241b87572e48cb8d807b13</cites><orcidid>0000-0002-2698-4357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-023-00373-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-023-00373-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ma, Yuzheng</creatorcontrib><creatorcontrib>Gao, Yubin</creatorcontrib><creatorcontrib>Shao, Yanling</creatorcontrib><title>Reciprocal distance signless Laplacian spread of connected graphs</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Let
G
be a connected graph with vertex set
V
(
G
)
=
{
v
1
,
v
2
,
…
,
v
n
}
. Recall that the reciprocal distance signless Laplacian matrix of
G
is defined to be
R
Q
(
G
)
=
R
T
(
G
)
+
R
D
(
G
)
, where
RD
(
G
) is the reciprocal distance matrix, and
R
T
i
is the reciprocal distance degree of vertex
v
i
for
i
=
1
,
2
,
…
,
n
,
R
T
(
G
)
=
diag
(
R
T
1
,
R
T
2
,
…
,
R
T
n
)
. Denote by
μ
1
(
R
Q
(
G
)
)
and
μ
n
(
R
Q
(
G
)
)
the largest eigenvalue and the least eigenvalue of
RQ
(
G
), respectively. The reciprocal distance signless Laplacian spread of
G
is defined as
S
RQ
(
G
)
=
μ
1
(
R
Q
(
G
)
)
-
μ
n
(
R
Q
(
G
)
)
. In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph.</description><subject>Applications of Mathematics</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><subject>Vertex sets</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwOUAocNxv_JZuYGD0TCrR2U2mF7sFvL1oTb55mDu-9efND6JLCNQWQN5lyxmoCjBMALjmRR2gFWgoiq1oclx2oJkIodYrOct4D1By0XqHNc3D9lEZnB-z7PNvoAs59F4eQM97ZabCutxHnKQXr8dhiN8YY3Bw87pKd3vI5OmntkMPF71yj17vbl-0D2T3dP243O-KYhJk47WuqKW9Y6dcwyQGYdh60s9YrIUDUPnBaNaJiFW2UFJKFSrlGeQWyoXyNrpbc0vbjEPJs9uMhxXLSMM0qpkFJXlRsUbk05pxCa6bUv9v0aSiYb1RmQWUKKvODyshi4oupfNnHLqS_6H9cX-ggapA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ma, Yuzheng</creator><creator>Gao, Yubin</creator><creator>Shao, Yanling</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2698-4357</orcidid></search><sort><creationdate>20240301</creationdate><title>Reciprocal distance signless Laplacian spread of connected graphs</title><author>Ma, Yuzheng ; Gao, Yubin ; Shao, Yanling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c9d61913b2037b2730029cd09caad855056de314b54241b87572e48cb8d807b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yuzheng</creatorcontrib><creatorcontrib>Gao, Yubin</creatorcontrib><creatorcontrib>Shao, Yanling</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yuzheng</au><au>Gao, Yubin</au><au>Shao, Yanling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal distance signless Laplacian spread of connected graphs</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>55</volume><issue>1</issue><spage>400</spage><epage>411</epage><pages>400-411</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Let
G
be a connected graph with vertex set
V
(
G
)
=
{
v
1
,
v
2
,
…
,
v
n
}
. Recall that the reciprocal distance signless Laplacian matrix of
G
is defined to be
R
Q
(
G
)
=
R
T
(
G
)
+
R
D
(
G
)
, where
RD
(
G
) is the reciprocal distance matrix, and
R
T
i
is the reciprocal distance degree of vertex
v
i
for
i
=
1
,
2
,
…
,
n
,
R
T
(
G
)
=
diag
(
R
T
1
,
R
T
2
,
…
,
R
T
n
)
. Denote by
μ
1
(
R
Q
(
G
)
)
and
μ
n
(
R
Q
(
G
)
)
the largest eigenvalue and the least eigenvalue of
RQ
(
G
), respectively. The reciprocal distance signless Laplacian spread of
G
is defined as
S
RQ
(
G
)
=
μ
1
(
R
Q
(
G
)
)
-
μ
n
(
R
Q
(
G
)
)
. In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-023-00373-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2698-4357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2024-03, Vol.55 (1), p.400-411 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2924290873 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Eigenvalues Mathematics Mathematics and Statistics Numerical Analysis Original Research Vertex sets |
title | Reciprocal distance signless Laplacian spread of connected graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20distance%20signless%20Laplacian%20spread%20of%20connected%20graphs&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Ma,%20Yuzheng&rft.date=2024-03-01&rft.volume=55&rft.issue=1&rft.spage=400&rft.epage=411&rft.pages=400-411&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-023-00373-7&rft_dat=%3Cproquest_cross%3E2924290873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924290873&rft_id=info:pmid/&rfr_iscdi=true |