Reciprocal distance signless Laplacian spread of connected graphs
Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , … , v n } . Recall that the reciprocal distance signless Laplacian matrix of G is defined to be R Q ( G ) = R T ( G ) + R D ( G ) , where RD ( G ) is the reciprocal distance matrix, and R T i is the reciprocal distance degree of vert...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2024-03, Vol.55 (1), p.400-411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a connected graph with vertex set
V
(
G
)
=
{
v
1
,
v
2
,
…
,
v
n
}
. Recall that the reciprocal distance signless Laplacian matrix of
G
is defined to be
R
Q
(
G
)
=
R
T
(
G
)
+
R
D
(
G
)
, where
RD
(
G
) is the reciprocal distance matrix, and
R
T
i
is the reciprocal distance degree of vertex
v
i
for
i
=
1
,
2
,
…
,
n
,
R
T
(
G
)
=
diag
(
R
T
1
,
R
T
2
,
…
,
R
T
n
)
. Denote by
μ
1
(
R
Q
(
G
)
)
and
μ
n
(
R
Q
(
G
)
)
the largest eigenvalue and the least eigenvalue of
RQ
(
G
), respectively. The reciprocal distance signless Laplacian spread of
G
is defined as
S
RQ
(
G
)
=
μ
1
(
R
Q
(
G
)
)
-
μ
n
(
R
Q
(
G
)
)
. In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-023-00373-7 |