Reciprocal distance signless Laplacian spread of connected graphs

Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , … , v n } . Recall that the reciprocal distance signless Laplacian matrix of G is defined to be R Q ( G ) = R T ( G ) + R D ( G ) , where RD ( G ) is the reciprocal distance matrix, and R T i is the reciprocal distance degree of vert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2024-03, Vol.55 (1), p.400-411
Hauptverfasser: Ma, Yuzheng, Gao, Yubin, Shao, Yanling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , … , v n } . Recall that the reciprocal distance signless Laplacian matrix of G is defined to be R Q ( G ) = R T ( G ) + R D ( G ) , where RD ( G ) is the reciprocal distance matrix, and R T i is the reciprocal distance degree of vertex v i for i = 1 , 2 , … , n , R T ( G ) = diag ( R T 1 , R T 2 , … , R T n ) . Denote by μ 1 ( R Q ( G ) ) and μ n ( R Q ( G ) ) the largest eigenvalue and the least eigenvalue of RQ ( G ), respectively. The reciprocal distance signless Laplacian spread of G is defined as S RQ ( G ) = μ 1 ( R Q ( G ) ) - μ n ( R Q ( G ) ) . In this paper, we obtain some bounds on reciprocal distance signless Laplacian spread of a graph.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-023-00373-7