Investigating and Controlling the Libration and Rotation Dynamics of Nanoparticles in an Optomechanical System

In optomechanical systems, the libration and rotation of nanoparticles offer profound insights for ultrasensitive torque measurement and macroscopic quantum superpositions. Achievements include transitioning libration to rotation up to 6 GHz and cooling libration to millikelvin temperatures. It is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: He, Chaoxiong, Wang, Jinchuan, Dong, Ying, Zhu, Shaochong, Qianwen Ying, Ma, Yuanyuan, Fu, Feng, Yin, Zhangqi, Li, Cuihong, Hu, Huizhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In optomechanical systems, the libration and rotation of nanoparticles offer profound insights for ultrasensitive torque measurement and macroscopic quantum superpositions. Achievements include transitioning libration to rotation up to 6 GHz and cooling libration to millikelvin temperatures. It is undoubted that the libration and rotation are respectively driven by restoring and constant optical torques. The transition mechanisms between these two states, however, demand further exploration. In this perspective, it is demonstrated in this manuscript that monitoring lateral-scattered light allows real-time observation of libration/rotation transitions and associated hysteresis as ellipticities of trapping laser fields vary. By calculating optical torques and solving the Langevin equation, transitions are linked to the balance between anisotropic-polarization-induced sinusoidal optical torques and constant ones, with absorption identified as the main contributor to constant torques. These findings enable direct weak torque sensing and precise nanoparticle control in rotational degrees, paving the way for studying quantum effects like nonadiabatic phase shifts and macroscopic quantum superpositions, thereby enriching quantum optomechanics research.
ISSN:2331-8422