Kolmogorov Equations for Degenerate Ornstein–Uhlenbeck Operators
We consider Kolmogorov operators with constant diffusion matrices and linear drifts, i.e., Ornstein–Uhlenbeck operators, and show that all solutions to the corresponding stationary Fokker–Planck–Kolmogorov equations (including signed solutions) are invariant measures for the generated semigroups. Th...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2024, Vol.65 (1), p.21-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Kolmogorov operators with constant diffusion matrices and linear drifts, i.e., Ornstein–Uhlenbeck operators, and show that all solutions to the corresponding stationary Fokker–Planck–Kolmogorov equations (including signed solutions) are invariant measures for the generated semigroups. This also gives a relatively explicit description of all solutions. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446624010038 |