Gluing \(\mathbb Z_2\)-Harmonic Spinors and Seiberg-Witten Monopoles on 3-Manifolds

Given a \(\mathbb Z_2\)-harmonic spinor satisfying some genericity assumptions, this article constructs a 1-parameter family of two-spinor Seiberg-Witten monopoles converging to it after renormalization. The proof is a gluing construction beginning with model solutions on a neighborhood of the \(\ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
1. Verfasser: Parker, Gregory J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a \(\mathbb Z_2\)-harmonic spinor satisfying some genericity assumptions, this article constructs a 1-parameter family of two-spinor Seiberg-Witten monopoles converging to it after renormalization. The proof is a gluing construction beginning with model solutions on a neighborhood of the \(\mathbb Z_2\)-harmonic spinor's singular set. The gluing is complicated by the presence of an infinite-dimensional obstruction bundle for the singular limiting linearized operator. This difficulty is overcome by introducing a generalization of Donaldson's alternating method in which a deformation of the \(\mathbb Z_2\)-harmonic spinor's singular set is chosen at each stage of the alternating iteration to cancel the obstruction components.
ISSN:2331-8422