Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge

Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.2634-2647
Hauptverfasser: Jia, Tongyao, Li, Jiafeng, Zhuo, Li, Yu, Tianjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2647
container_issue
container_start_page 2634
container_title IEEE transactions on multimedia
container_volume 26
creator Jia, Tongyao
Li, Jiafeng
Zhuo, Li
Yu, Tianjian
description Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.
doi_str_mv 10.1109/TMM.2023.3301273
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2923110979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10202595</ieee_id><sourcerecordid>2923110979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYjePXhY4rn42m7rejQgSmR6AM9Ny95wCBu2A6J_vV3g4On9yOf7vi9fQm4ZDBgD9TDP8wEHLgZCAONSnJEeUzGjAFKehz7hQBVncEmuvF8BsDgB2SP5DDcVne226PaVxyKaVfVyjXSyMUuMRvhpfsMiesP20LivaF-ZaBS4ujUdVkQ5toa-1s0hDEu8JhelWXu8OdU--Rg_zYcvdPr-PBk-TumCK97StChjm8m4MDHHVFqLhZCYcZ4mPLWK8VixlFkWPiwyAVIYY0srSskhs1lmRJ_cH-9uXfO9Q9_qVbNzdbDUwUB0gUgVKDhSC9d477DUW1dtjPvRDHTH6BCa7kLTp9CC5O4oqRDxHx6gRCXiD7vIZzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923110979</pqid></control><display><type>article</type><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</creator><creatorcontrib>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</creatorcontrib><description>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3301273</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Datasets ; Disentangled representations ; Image reconstruction ; meta-learning ; Metalearning ; Prediction algorithms ; semi-supervised learning ; single-image dehazing ; Synthetic data ; Task analysis ; Training</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.2634-2647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</citedby><cites>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</cites><orcidid>0000-0002-9937-2669 ; 0000-0003-2370-7247 ; 0000-0001-6976-7275 ; 0000-0002-2024-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10202595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10202595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Datasets</subject><subject>Disentangled representations</subject><subject>Image reconstruction</subject><subject>meta-learning</subject><subject>Metalearning</subject><subject>Prediction algorithms</subject><subject>semi-supervised learning</subject><subject>single-image dehazing</subject><subject>Synthetic data</subject><subject>Task analysis</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAUxxujiYjePXhY4rn42m7rejQgSmR6AM9Ny95wCBu2A6J_vV3g4On9yOf7vi9fQm4ZDBgD9TDP8wEHLgZCAONSnJEeUzGjAFKehz7hQBVncEmuvF8BsDgB2SP5DDcVne226PaVxyKaVfVyjXSyMUuMRvhpfsMiesP20LivaF-ZaBS4ujUdVkQ5toa-1s0hDEu8JhelWXu8OdU--Rg_zYcvdPr-PBk-TumCK97StChjm8m4MDHHVFqLhZCYcZ4mPLWK8VixlFkWPiwyAVIYY0srSskhs1lmRJ_cH-9uXfO9Q9_qVbNzdbDUwUB0gUgVKDhSC9d477DUW1dtjPvRDHTH6BCa7kLTp9CC5O4oqRDxHx6gRCXiD7vIZzc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Tongyao</creator><creator>Li, Jiafeng</creator><creator>Zhuo, Li</creator><creator>Yu, Tianjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9937-2669</orcidid><orcidid>https://orcid.org/0000-0003-2370-7247</orcidid><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid><orcidid>https://orcid.org/0000-0002-2024-8826</orcidid></search><sort><creationdate>2024</creationdate><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><author>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Datasets</topic><topic>Disentangled representations</topic><topic>Image reconstruction</topic><topic>meta-learning</topic><topic>Metalearning</topic><topic>Prediction algorithms</topic><topic>semi-supervised learning</topic><topic>single-image dehazing</topic><topic>Synthetic data</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Tongyao</au><au>Li, Jiafeng</au><au>Zhuo, Li</au><au>Yu, Tianjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>2634</spage><epage>2647</epage><pages>2634-2647</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3301273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9937-2669</orcidid><orcidid>https://orcid.org/0000-0003-2370-7247</orcidid><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid><orcidid>https://orcid.org/0000-0002-2024-8826</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.2634-2647
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2923110979
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric modeling
Datasets
Disentangled representations
Image reconstruction
meta-learning
Metalearning
Prediction algorithms
semi-supervised learning
single-image dehazing
Synthetic data
Task analysis
Training
title Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Single-Image%20Dehazing%20Network%20via%20Disentangled%20Meta-Knowledge&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Jia,%20Tongyao&rft.date=2024&rft.volume=26&rft.spage=2634&rft.epage=2647&rft.pages=2634-2647&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3301273&rft_dat=%3Cproquest_RIE%3E2923110979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923110979&rft_id=info:pmid/&rft_ieee_id=10202595&rfr_iscdi=true