Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge
Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-ima...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.2634-2647 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2647 |
---|---|
container_issue | |
container_start_page | 2634 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Jia, Tongyao Li, Jiafeng Zhuo, Li Yu, Tianjian |
description | Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks. |
doi_str_mv | 10.1109/TMM.2023.3301273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2923110979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10202595</ieee_id><sourcerecordid>2923110979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYjePXhY4rn42m7rejQgSmR6AM9Ny95wCBu2A6J_vV3g4On9yOf7vi9fQm4ZDBgD9TDP8wEHLgZCAONSnJEeUzGjAFKehz7hQBVncEmuvF8BsDgB2SP5DDcVne226PaVxyKaVfVyjXSyMUuMRvhpfsMiesP20LivaF-ZaBS4ujUdVkQ5toa-1s0hDEu8JhelWXu8OdU--Rg_zYcvdPr-PBk-TumCK97StChjm8m4MDHHVFqLhZCYcZ4mPLWK8VixlFkWPiwyAVIYY0srSskhs1lmRJ_cH-9uXfO9Q9_qVbNzdbDUwUB0gUgVKDhSC9d477DUW1dtjPvRDHTH6BCa7kLTp9CC5O4oqRDxHx6gRCXiD7vIZzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923110979</pqid></control><display><type>article</type><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</creator><creatorcontrib>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</creatorcontrib><description>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3301273</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Datasets ; Disentangled representations ; Image reconstruction ; meta-learning ; Metalearning ; Prediction algorithms ; semi-supervised learning ; single-image dehazing ; Synthetic data ; Task analysis ; Training</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.2634-2647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</citedby><cites>FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</cites><orcidid>0000-0002-9937-2669 ; 0000-0003-2370-7247 ; 0000-0001-6976-7275 ; 0000-0002-2024-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10202595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10202595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Datasets</subject><subject>Disentangled representations</subject><subject>Image reconstruction</subject><subject>meta-learning</subject><subject>Metalearning</subject><subject>Prediction algorithms</subject><subject>semi-supervised learning</subject><subject>single-image dehazing</subject><subject>Synthetic data</subject><subject>Task analysis</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAUxxujiYjePXhY4rn42m7rejQgSmR6AM9Ny95wCBu2A6J_vV3g4On9yOf7vi9fQm4ZDBgD9TDP8wEHLgZCAONSnJEeUzGjAFKehz7hQBVncEmuvF8BsDgB2SP5DDcVne226PaVxyKaVfVyjXSyMUuMRvhpfsMiesP20LivaF-ZaBS4ujUdVkQ5toa-1s0hDEu8JhelWXu8OdU--Rg_zYcvdPr-PBk-TumCK97StChjm8m4MDHHVFqLhZCYcZ4mPLWK8VixlFkWPiwyAVIYY0srSskhs1lmRJ_cH-9uXfO9Q9_qVbNzdbDUwUB0gUgVKDhSC9d477DUW1dtjPvRDHTH6BCa7kLTp9CC5O4oqRDxHx6gRCXiD7vIZzc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Tongyao</creator><creator>Li, Jiafeng</creator><creator>Zhuo, Li</creator><creator>Yu, Tianjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9937-2669</orcidid><orcidid>https://orcid.org/0000-0003-2370-7247</orcidid><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid><orcidid>https://orcid.org/0000-0002-2024-8826</orcidid></search><sort><creationdate>2024</creationdate><title>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</title><author>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Yu, Tianjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6df4b874da42e67bbed37e8226526b91249161b1507d83073aabfb3f7208b88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Datasets</topic><topic>Disentangled representations</topic><topic>Image reconstruction</topic><topic>meta-learning</topic><topic>Metalearning</topic><topic>Prediction algorithms</topic><topic>semi-supervised learning</topic><topic>single-image dehazing</topic><topic>Synthetic data</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Tongyao</au><au>Li, Jiafeng</au><au>Zhuo, Li</au><au>Yu, Tianjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>2634</spage><epage>2647</epage><pages>2634-2647</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3301273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9937-2669</orcidid><orcidid>https://orcid.org/0000-0003-2370-7247</orcidid><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid><orcidid>https://orcid.org/0000-0002-2024-8826</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.2634-2647 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2923110979 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Atmospheric modeling Datasets Disentangled representations Image reconstruction meta-learning Metalearning Prediction algorithms semi-supervised learning single-image dehazing Synthetic data Task analysis Training |
title | Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Single-Image%20Dehazing%20Network%20via%20Disentangled%20Meta-Knowledge&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Jia,%20Tongyao&rft.date=2024&rft.volume=26&rft.spage=2634&rft.epage=2647&rft.pages=2634-2647&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3301273&rft_dat=%3Cproquest_RIE%3E2923110979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923110979&rft_id=info:pmid/&rft_ieee_id=10202595&rfr_iscdi=true |