Semi-Supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge

Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.2634-2647
Hauptverfasser: Jia, Tongyao, Li, Jiafeng, Zhuo, Li, Yu, Tianjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Captured outdoor scene images are easily affected by haze. Most image dehazing methods have limited generalization capabilities for real-world hazy images owing to the complexities of real-world environments and domain gaps in the training datasets. This article proposes a semi-supervised single-image dehazing network based on disentangled meta-knowledge. The symmetric and heterogeneous design of the disentangled network is conducive to the separation of the content and mask features of hazy images and these features are used as meta-knowledge to guide feature fusion in the dehazing network. Moreover, functions describing constant-color and disentangled-reconstruction-checking losses are designed to ensure the subjective qualities of the generated dehazed images. The results of extensive experiments conducted on synthetic datasets and real-world images indicate that the proposed algorithm outperforms state-of-the-art single-image dehazing algorithms. In addition, the algorithm effectively improves the performance of object-detection tasks.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2023.3301273