Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective

Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (6), p.5438-5446
Hauptverfasser: Chen, Cuifan, Yang, Zhi, Liu, Ruiping, Xue, Lin, Xu, Li-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5446
container_issue 6
container_start_page 5438
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Chen, Cuifan
Yang, Zhi
Liu, Ruiping
Xue, Lin
Xu, Li-Chun
description Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi 2 O 2 Se. Our findings reveal that monolayer Bi 2 O 2 Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi 2 O 2 Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi 2 O 2 Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials. There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band, and the monolayer displays a shorter relaxation time.
doi_str_mv 10.1039/d3cp05357a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2922965729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922965729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgit8X70rAiwjVpNM0rTdZP0HQg55LmsxqpG1q0qr77427uoKnCZknL8yEkD3OTjiD8tSA7pkAIdUK2eRZDknJimx1eZb5BtkK4ZUxxgWHdbIBRSoFF2yTPN92wT6_DIHabnAUG9SDdx01s061Vn9f0-HDJca2GKXrVENrG9pxeKHucxbig84aPKOKtq5zjZqhT2o7r7RHH_oYaN9xh6xNVRNw96duk6ery8fJTXJ3f307Ob9LNIAckjIvhJnqEpnSrNAiDpBJFKaWnGUoAUyuBJ_WWVrIIpcGmFIqr3OGtYIsE7BNjha5vXdvI4aham3Q2DSqQzeGKi1TgLQoGI_08B99daOPA85VWuZCpmVUxwulvQvB47TqvW2Vn1WcVd_rry5g8jBf_3nEBz-RY92iWdLffUewvwA-6GX37__gCy02irA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922965729</pqid></control><display><type>article</type><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</creator><creatorcontrib>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</creatorcontrib><description>Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi 2 O 2 Se. Our findings reveal that monolayer Bi 2 O 2 Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi 2 O 2 Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi 2 O 2 Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials. There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band, and the monolayer displays a shorter relaxation time.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05357a</identifier><identifier>PMID: 38275150</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bilayers ; Bismuth ; Carrier mobility ; Conduction bands ; Electromagnetic absorption ; Excitation ; Forbidden transitions ; Hot electrons ; Layered materials ; Molecular dynamics ; Monolayers ; Optical properties ; Parity ; Relaxation time ; Semiconductor materials ; Two dimensional materials</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.5438-5446</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</citedby><cites>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</cites><orcidid>0000-0002-6136-6888 ; 0000-0001-7934-5682 ; 0000-0002-5982-3330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38275150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Cuifan</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><creatorcontrib>Xue, Lin</creatorcontrib><creatorcontrib>Xu, Li-Chun</creatorcontrib><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi 2 O 2 Se. Our findings reveal that monolayer Bi 2 O 2 Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi 2 O 2 Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi 2 O 2 Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials. There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band, and the monolayer displays a shorter relaxation time.</description><subject>Bilayers</subject><subject>Bismuth</subject><subject>Carrier mobility</subject><subject>Conduction bands</subject><subject>Electromagnetic absorption</subject><subject>Excitation</subject><subject>Forbidden transitions</subject><subject>Hot electrons</subject><subject>Layered materials</subject><subject>Molecular dynamics</subject><subject>Monolayers</subject><subject>Optical properties</subject><subject>Parity</subject><subject>Relaxation time</subject><subject>Semiconductor materials</subject><subject>Two dimensional materials</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgit8X70rAiwjVpNM0rTdZP0HQg55LmsxqpG1q0qr77427uoKnCZknL8yEkD3OTjiD8tSA7pkAIdUK2eRZDknJimx1eZb5BtkK4ZUxxgWHdbIBRSoFF2yTPN92wT6_DIHabnAUG9SDdx01s061Vn9f0-HDJca2GKXrVENrG9pxeKHucxbig84aPKOKtq5zjZqhT2o7r7RHH_oYaN9xh6xNVRNw96duk6ery8fJTXJ3f307Ob9LNIAckjIvhJnqEpnSrNAiDpBJFKaWnGUoAUyuBJ_WWVrIIpcGmFIqr3OGtYIsE7BNjha5vXdvI4aham3Q2DSqQzeGKi1TgLQoGI_08B99daOPA85VWuZCpmVUxwulvQvB47TqvW2Vn1WcVd_rry5g8jBf_3nEBz-RY92iWdLffUewvwA-6GX37__gCy02irA</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Chen, Cuifan</creator><creator>Yang, Zhi</creator><creator>Liu, Ruiping</creator><creator>Xue, Lin</creator><creator>Xu, Li-Chun</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6136-6888</orcidid><orcidid>https://orcid.org/0000-0001-7934-5682</orcidid><orcidid>https://orcid.org/0000-0002-5982-3330</orcidid></search><sort><creationdate>20240207</creationdate><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><author>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bilayers</topic><topic>Bismuth</topic><topic>Carrier mobility</topic><topic>Conduction bands</topic><topic>Electromagnetic absorption</topic><topic>Excitation</topic><topic>Forbidden transitions</topic><topic>Hot electrons</topic><topic>Layered materials</topic><topic>Molecular dynamics</topic><topic>Monolayers</topic><topic>Optical properties</topic><topic>Parity</topic><topic>Relaxation time</topic><topic>Semiconductor materials</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cuifan</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><creatorcontrib>Xue, Lin</creatorcontrib><creatorcontrib>Xu, Li-Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cuifan</au><au>Yang, Zhi</au><au>Liu, Ruiping</au><au>Xue, Lin</au><au>Xu, Li-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>5438</spage><epage>5446</epage><pages>5438-5446</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi 2 O 2 Se. Our findings reveal that monolayer Bi 2 O 2 Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi 2 O 2 Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi 2 O 2 Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials. There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi 2 O 2 Se within the conduction band, and the monolayer displays a shorter relaxation time.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38275150</pmid><doi>10.1039/d3cp05357a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6136-6888</orcidid><orcidid>https://orcid.org/0000-0001-7934-5682</orcidid><orcidid>https://orcid.org/0000-0002-5982-3330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.5438-5446
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2922965729
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bilayers
Bismuth
Carrier mobility
Conduction bands
Electromagnetic absorption
Excitation
Forbidden transitions
Hot electrons
Layered materials
Molecular dynamics
Monolayers
Optical properties
Parity
Relaxation time
Semiconductor materials
Two dimensional materials
title Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20electron%20dynamics%20in%20two-dimensional%20bismuth%20oxyselenide:%20a%20monolayer-bilayer%20perspective&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chen,%20Cuifan&rft.date=2024-02-07&rft.volume=26&rft.issue=6&rft.spage=5438&rft.epage=5446&rft.pages=5438-5446&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05357a&rft_dat=%3Cproquest_pubme%3E2922965729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922965729&rft_id=info:pmid/38275150&rfr_iscdi=true