Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective
Bismuth oxyselenide (Bi 2 O 2 Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (6), p.5438-5446 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5446 |
---|---|
container_issue | 6 |
container_start_page | 5438 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Chen, Cuifan Yang, Zhi Liu, Ruiping Xue, Lin Xu, Li-Chun |
description | Bismuth oxyselenide (Bi
2
O
2
Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi
2
O
2
Se. Our findings reveal that monolayer Bi
2
O
2
Se exhibits parity-forbidden transitions between the band edges at the
Γ
point, whereas bilayer Bi
2
O
2
Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi
2
O
2
Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band, and the monolayer displays a shorter relaxation time. |
doi_str_mv | 10.1039/d3cp05357a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2922965729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922965729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgit8X70rAiwjVpNM0rTdZP0HQg55LmsxqpG1q0qr77427uoKnCZknL8yEkD3OTjiD8tSA7pkAIdUK2eRZDknJimx1eZb5BtkK4ZUxxgWHdbIBRSoFF2yTPN92wT6_DIHabnAUG9SDdx01s061Vn9f0-HDJca2GKXrVENrG9pxeKHucxbig84aPKOKtq5zjZqhT2o7r7RHH_oYaN9xh6xNVRNw96duk6ery8fJTXJ3f307Ob9LNIAckjIvhJnqEpnSrNAiDpBJFKaWnGUoAUyuBJ_WWVrIIpcGmFIqr3OGtYIsE7BNjha5vXdvI4aham3Q2DSqQzeGKi1TgLQoGI_08B99daOPA85VWuZCpmVUxwulvQvB47TqvW2Vn1WcVd_rry5g8jBf_3nEBz-RY92iWdLffUewvwA-6GX37__gCy02irA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922965729</pqid></control><display><type>article</type><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</creator><creatorcontrib>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</creatorcontrib><description>Bismuth oxyselenide (Bi
2
O
2
Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi
2
O
2
Se. Our findings reveal that monolayer Bi
2
O
2
Se exhibits parity-forbidden transitions between the band edges at the
Γ
point, whereas bilayer Bi
2
O
2
Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi
2
O
2
Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band, and the monolayer displays a shorter relaxation time.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05357a</identifier><identifier>PMID: 38275150</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bilayers ; Bismuth ; Carrier mobility ; Conduction bands ; Electromagnetic absorption ; Excitation ; Forbidden transitions ; Hot electrons ; Layered materials ; Molecular dynamics ; Monolayers ; Optical properties ; Parity ; Relaxation time ; Semiconductor materials ; Two dimensional materials</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.5438-5446</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</citedby><cites>FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</cites><orcidid>0000-0002-6136-6888 ; 0000-0001-7934-5682 ; 0000-0002-5982-3330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38275150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Cuifan</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><creatorcontrib>Xue, Lin</creatorcontrib><creatorcontrib>Xu, Li-Chun</creatorcontrib><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Bismuth oxyselenide (Bi
2
O
2
Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi
2
O
2
Se. Our findings reveal that monolayer Bi
2
O
2
Se exhibits parity-forbidden transitions between the band edges at the
Γ
point, whereas bilayer Bi
2
O
2
Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi
2
O
2
Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band, and the monolayer displays a shorter relaxation time.</description><subject>Bilayers</subject><subject>Bismuth</subject><subject>Carrier mobility</subject><subject>Conduction bands</subject><subject>Electromagnetic absorption</subject><subject>Excitation</subject><subject>Forbidden transitions</subject><subject>Hot electrons</subject><subject>Layered materials</subject><subject>Molecular dynamics</subject><subject>Monolayers</subject><subject>Optical properties</subject><subject>Parity</subject><subject>Relaxation time</subject><subject>Semiconductor materials</subject><subject>Two dimensional materials</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgit8X70rAiwjVpNM0rTdZP0HQg55LmsxqpG1q0qr77427uoKnCZknL8yEkD3OTjiD8tSA7pkAIdUK2eRZDknJimx1eZb5BtkK4ZUxxgWHdbIBRSoFF2yTPN92wT6_DIHabnAUG9SDdx01s061Vn9f0-HDJca2GKXrVENrG9pxeKHucxbig84aPKOKtq5zjZqhT2o7r7RHH_oYaN9xh6xNVRNw96duk6ery8fJTXJ3f307Ob9LNIAckjIvhJnqEpnSrNAiDpBJFKaWnGUoAUyuBJ_WWVrIIpcGmFIqr3OGtYIsE7BNjha5vXdvI4aham3Q2DSqQzeGKi1TgLQoGI_08B99daOPA85VWuZCpmVUxwulvQvB47TqvW2Vn1WcVd_rry5g8jBf_3nEBz-RY92iWdLffUewvwA-6GX37__gCy02irA</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Chen, Cuifan</creator><creator>Yang, Zhi</creator><creator>Liu, Ruiping</creator><creator>Xue, Lin</creator><creator>Xu, Li-Chun</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6136-6888</orcidid><orcidid>https://orcid.org/0000-0001-7934-5682</orcidid><orcidid>https://orcid.org/0000-0002-5982-3330</orcidid></search><sort><creationdate>20240207</creationdate><title>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</title><author>Chen, Cuifan ; Yang, Zhi ; Liu, Ruiping ; Xue, Lin ; Xu, Li-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9685dfc9e0ac08c546347e5db7104e733d6a51fb4287867d30aaa6b60eba34453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bilayers</topic><topic>Bismuth</topic><topic>Carrier mobility</topic><topic>Conduction bands</topic><topic>Electromagnetic absorption</topic><topic>Excitation</topic><topic>Forbidden transitions</topic><topic>Hot electrons</topic><topic>Layered materials</topic><topic>Molecular dynamics</topic><topic>Monolayers</topic><topic>Optical properties</topic><topic>Parity</topic><topic>Relaxation time</topic><topic>Semiconductor materials</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cuifan</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><creatorcontrib>Xue, Lin</creatorcontrib><creatorcontrib>Xu, Li-Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cuifan</au><au>Yang, Zhi</au><au>Liu, Ruiping</au><au>Xue, Lin</au><au>Xu, Li-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>5438</spage><epage>5446</epage><pages>5438-5446</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Bismuth oxyselenide (Bi
2
O
2
Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi
2
O
2
Se. Our findings reveal that monolayer Bi
2
O
2
Se exhibits parity-forbidden transitions between the band edges at the
Γ
point, whereas bilayer Bi
2
O
2
Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi
2
O
2
Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
There is a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi
2
O
2
Se within the conduction band, and the monolayer displays a shorter relaxation time.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38275150</pmid><doi>10.1039/d3cp05357a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6136-6888</orcidid><orcidid>https://orcid.org/0000-0001-7934-5682</orcidid><orcidid>https://orcid.org/0000-0002-5982-3330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.5438-5446 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2922965729 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bilayers Bismuth Carrier mobility Conduction bands Electromagnetic absorption Excitation Forbidden transitions Hot electrons Layered materials Molecular dynamics Monolayers Optical properties Parity Relaxation time Semiconductor materials Two dimensional materials |
title | Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20electron%20dynamics%20in%20two-dimensional%20bismuth%20oxyselenide:%20a%20monolayer-bilayer%20perspective&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chen,%20Cuifan&rft.date=2024-02-07&rft.volume=26&rft.issue=6&rft.spage=5438&rft.epage=5446&rft.pages=5438-5446&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05357a&rft_dat=%3Cproquest_pubme%3E2922965729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922965729&rft_id=info:pmid/38275150&rfr_iscdi=true |