Revisiting the Markov Property for Machine Translation

In this paper, we re-examine the Markov property in the context of neural machine translation. We design a Markov Autoregressive Transformer~(MAT) and undertake a comprehensive assessment of its performance across four WMT benchmarks. Our findings indicate that MAT with an order larger than 4 can ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Du, Cunxiao, Zhou, Hao, Tu, Zhaopeng, Jiang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we re-examine the Markov property in the context of neural machine translation. We design a Markov Autoregressive Transformer~(MAT) and undertake a comprehensive assessment of its performance across four WMT benchmarks. Our findings indicate that MAT with an order larger than 4 can generate translations with quality on par with that of conventional autoregressive transformers. In addition, counter-intuitively, we also find that the advantages of utilizing a higher-order MAT do not specifically contribute to the translation of longer sentences.
ISSN:2331-8422