Extensions of MacMahon’s sums of divisors

In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2024-03, Vol.11 (1), Article 8
Hauptverfasser: Amdeberhan, Tewodros, Andrews, George E., Tauraso, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is quite different from MacMahon and involves rational function approximation to MacMahon-type generating functions. One such example involves multiple q -harmonic sums ∑ k = 1 n ( - 1 ) k - 1 n k q ( 1 + q k ) q k 2 + t k [ k ] q 2 t n + k k q = ∑ 1 ≤ k 1 ≤ ⋯ ≤ k 2 t ≤ n q n + k 1 + k 3 ⋯ + k 2 t - 1 + q k 2 + k 4 + ⋯ + k 2 t [ n + k 1 ] q [ k 2 ] q ⋯ [ k 2 t ] q .
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-024-00421-6