Extensions of MacMahon’s sums of divisors
In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2024-03, Vol.11 (1), Article 8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so, we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is quite different from MacMahon and involves
rational
function approximation to MacMahon-type generating functions. One such example involves multiple
q
-harmonic sums
∑
k
=
1
n
(
-
1
)
k
-
1
n
k
q
(
1
+
q
k
)
q
k
2
+
t
k
[
k
]
q
2
t
n
+
k
k
q
=
∑
1
≤
k
1
≤
⋯
≤
k
2
t
≤
n
q
n
+
k
1
+
k
3
⋯
+
k
2
t
-
1
+
q
k
2
+
k
4
+
⋯
+
k
2
t
[
n
+
k
1
]
q
[
k
2
]
q
⋯
[
k
2
t
]
q
. |
---|---|
ISSN: | 2522-0144 2197-9847 |
DOI: | 10.1007/s40687-024-00421-6 |