On Stationary Navier-Stokes Equations in the Upper-Half Plane

We study the incompressible stationary Navier-Stokes equations in the upper-half plane with homogeneous Dirichlet boundary condition and non-zero external forcing terms. Existence of weak solutions is proved under a suitable condition on the external forces. Weak-strong uniqueness criteria based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2024-02, Vol.189 (1), p.7, Article 7
Hauptverfasser: Calderon, Adrian D., Le, Van, Phan, Tuoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the incompressible stationary Navier-Stokes equations in the upper-half plane with homogeneous Dirichlet boundary condition and non-zero external forcing terms. Existence of weak solutions is proved under a suitable condition on the external forces. Weak-strong uniqueness criteria based on various growth conditions at the infinity of weak solutions are also given. This is done by employing an energy estimate and a Hardy’s inequality. Several estimates of stream functions are carried out and two density lemmas with suitable weights for the homogeneous Sobolev space on 2-dimensional space are proved.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-024-00636-3