An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of PDE 2023-12, Vol.9 (2), p.12, Article 12
Hauptverfasser: Feizmohammadi, Ali, Liimatainen, Tony, Lin, Yi-Hsuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 12
container_title Annals of PDE
container_volume 9
creator Feizmohammadi, Ali
Liimatainen, Tony
Lin, Yi-Hsuan
description Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity q u 2 , and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
doi_str_mv 10.1007/s40818-023-00153-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922078214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922078214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61483c46d402304c1cffda9c024f9f2a868f81af68a54a72ec787d0d7c05fd2a3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJg0f6Ap4Dn6CSb3c0eS6laqChYzyFmE92ym2yTraV_b9oVvAkDMwPvvZn3ELqhcEcByvvIQVBBgGUEgOYZ2Z-hCaNVRVheFudpzhkneUbLSzSNcQMAjHKeQzFBXzOHl-7bhGjwa_Afremw9QEr_Ga6pm2cUQEv2rbph0bjxXanhsY7nGruXQJ2qm0PeB2Ui0eR0zZzTfRD8H1iPCvXWN_W8RpdWNVGM_3tV-j9YbGeP5HVy-NyPlsRndFqIAXlItO8qHmyA1xTbW2tKg2M28oyJQphBVW2ECrnqmRGl6KsoS415LZmKrtCt6NuH_x2Z-IgN34XXDopWcUYlCJ5Tyg2onTwMQZjZR-aToWDpCCPocoxVJm-kKdQ5T6RspEUE9h9mvAn_Q_rB7iqe5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922078214</pqid></control><display><type>article</type><title>An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Feizmohammadi, Ali ; Liimatainen, Tony ; Lin, Yi-Hsuan</creator><creatorcontrib>Feizmohammadi, Ali ; Liimatainen, Tony ; Lin, Yi-Hsuan</creatorcontrib><description>Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity q u 2 , and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-023-00153-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Dirichlet problem ; Eigenvalues ; Euclidean space ; Inverse problems ; Laplace equation ; Manifolds ; Mathematical Methods in Physics ; Nonlinear equations ; Partial Differential Equations ; Physics ; Physics and Astronomy</subject><ispartof>Annals of PDE, 2023-12, Vol.9 (2), p.12, Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61483c46d402304c1cffda9c024f9f2a868f81af68a54a72ec787d0d7c05fd2a3</citedby><cites>FETCH-LOGICAL-c319t-61483c46d402304c1cffda9c024f9f2a868f81af68a54a72ec787d0d7c05fd2a3</cites><orcidid>0000-0002-3850-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40818-023-00153-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922078214?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Feizmohammadi, Ali</creatorcontrib><creatorcontrib>Liimatainen, Tony</creatorcontrib><creatorcontrib>Lin, Yi-Hsuan</creatorcontrib><title>An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity q u 2 , and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.</description><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Euclidean space</subject><subject>Inverse problems</subject><subject>Laplace equation</subject><subject>Manifolds</subject><subject>Mathematical Methods in Physics</subject><subject>Nonlinear equations</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMFKAzEQDaJg0f6Ap4Dn6CSb3c0eS6laqChYzyFmE92ym2yTraV_b9oVvAkDMwPvvZn3ELqhcEcByvvIQVBBgGUEgOYZ2Z-hCaNVRVheFudpzhkneUbLSzSNcQMAjHKeQzFBXzOHl-7bhGjwa_Afremw9QEr_Ga6pm2cUQEv2rbph0bjxXanhsY7nGruXQJ2qm0PeB2Ui0eR0zZzTfRD8H1iPCvXWN_W8RpdWNVGM_3tV-j9YbGeP5HVy-NyPlsRndFqIAXlItO8qHmyA1xTbW2tKg2M28oyJQphBVW2ECrnqmRGl6KsoS415LZmKrtCt6NuH_x2Z-IgN34XXDopWcUYlCJ5Tyg2onTwMQZjZR-aToWDpCCPocoxVJm-kKdQ5T6RspEUE9h9mvAn_Q_rB7iqe5U</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Feizmohammadi, Ali</creator><creator>Liimatainen, Tony</creator><creator>Lin, Yi-Hsuan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3850-8091</orcidid></search><sort><creationdate>20231201</creationdate><title>An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds</title><author>Feizmohammadi, Ali ; Liimatainen, Tony ; Lin, Yi-Hsuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61483c46d402304c1cffda9c024f9f2a868f81af68a54a72ec787d0d7c05fd2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Euclidean space</topic><topic>Inverse problems</topic><topic>Laplace equation</topic><topic>Manifolds</topic><topic>Mathematical Methods in Physics</topic><topic>Nonlinear equations</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feizmohammadi, Ali</creatorcontrib><creatorcontrib>Liimatainen, Tony</creatorcontrib><creatorcontrib>Lin, Yi-Hsuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feizmohammadi, Ali</au><au>Liimatainen, Tony</au><au>Lin, Yi-Hsuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>12</spage><pages>12-</pages><artnum>12</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity q u 2 , and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-023-00153-w</doi><orcidid>https://orcid.org/0000-0002-3850-8091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-5317
ispartof Annals of PDE, 2023-12, Vol.9 (2), p.12, Article 12
issn 2524-5317
2199-2576
language eng
recordid cdi_proquest_journals_2922078214
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Dirichlet problem
Eigenvalues
Euclidean space
Inverse problems
Laplace equation
Manifolds
Mathematical Methods in Physics
Nonlinear equations
Partial Differential Equations
Physics
Physics and Astronomy
title An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inverse%20Problem%20for%20a%20Semilinear%20Elliptic%20Equation%20on%20Conformally%20Transversally%20Anisotropic%20Manifolds&rft.jtitle=Annals%20of%20PDE&rft.au=Feizmohammadi,%20Ali&rft.date=2023-12-01&rft.volume=9&rft.issue=2&rft.spage=12&rft.pages=12-&rft.artnum=12&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-023-00153-w&rft_dat=%3Cproquest_cross%3E2922078214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922078214&rft_id=info:pmid/&rfr_iscdi=true