An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds
Given a conformally transversally anisotropic manifold ( M , g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equati...
Gespeichert in:
Veröffentlicht in: | Annals of PDE 2023-12, Vol.9 (2), p.12, Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a conformally transversally anisotropic manifold (
M
,
g
), we consider the semilinear elliptic equation
(
-
Δ
g
+
V
)
u
+
q
u
2
=
0
on
M
.
We show that an a priori unknown smooth function
q
can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity
q
u
2
, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms. |
---|---|
ISSN: | 2524-5317 2199-2576 |
DOI: | 10.1007/s40818-023-00153-w |