An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of PDE 2023-12, Vol.9 (2), p.12, Article 12
Hauptverfasser: Feizmohammadi, Ali, Liimatainen, Tony, Lin, Yi-Hsuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a conformally transversally anisotropic manifold ( M ,  g ), we consider the semilinear elliptic equation ( - Δ g + V ) u + q u 2 = 0 on M . We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity q u 2 , and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
ISSN:2524-5317
2199-2576
DOI:10.1007/s40818-023-00153-w