Maxey–Riley equation: newer perspective
Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We s...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2024, Vol.12 (1), p.85-97 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | International journal of dynamics and control |
container_volume | 12 |
creator | Hegade, Abhiram Daftardar-Gejji, Varsha Bhalekar, Sachin |
description | Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics. |
doi_str_mv | 10.1007/s40435-023-01268-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922077936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922077936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e5ae7d6a7bb2b38295327a9f78d64fdf1be25ee2521ac795d2a64a22f175b2003</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4MouKz7Ap4WPHmITiZN03iTxX-wIoiCt5C2U-mytt2kVXvzHXxDn8RqRW8ehpnD9_sNfIztCzgSAPo4RBBJxQElB4FxwtUWm6AwimNsku3fO3nYZbMQVgCAIgKMzIQdXrtX6j_e3m_LNfVz2nSuLevqZF7RC_l5Qz40lLXlM-2xncKtA81-9pTdn5_dLS758ubianG65BlqaDkpRzqPnU5TTGWCRknUzhQ6yeOoyAuREioaBoXLtFE5ujhyiIXQKkUAOWUHY2_j601HobWruvPV8NKiQQStjYwHCkcq83UIngrb-PLJ-d4KsF9W7GjFDlbstxWrhpAcQ2GAq0fyf9X_pD4BFONkfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922077936</pqid></control><display><type>article</type><title>Maxey–Riley equation: newer perspective</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hegade, Abhiram ; Daftardar-Gejji, Varsha ; Bhalekar, Sachin</creator><creatorcontrib>Hegade, Abhiram ; Daftardar-Gejji, Varsha ; Bhalekar, Sachin</creatorcontrib><description>Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-023-01268-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Differential equations ; Dynamical Systems ; Engineering ; Fractional calculus ; Nonuniform flow ; Vibration</subject><ispartof>International journal of dynamics and control, 2024, Vol.12 (1), p.85-97</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e5ae7d6a7bb2b38295327a9f78d64fdf1be25ee2521ac795d2a64a22f175b2003</cites><orcidid>0000-0001-9569-9413 ; 0000-0002-0277-462X ; 0000-0003-1981-8171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-023-01268-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-023-01268-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hegade, Abhiram</creatorcontrib><creatorcontrib>Daftardar-Gejji, Varsha</creatorcontrib><creatorcontrib>Bhalekar, Sachin</creatorcontrib><title>Maxey–Riley equation: newer perspective</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Nonuniform flow</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4MouKz7Ap4WPHmITiZN03iTxX-wIoiCt5C2U-mytt2kVXvzHXxDn8RqRW8ehpnD9_sNfIztCzgSAPo4RBBJxQElB4FxwtUWm6AwimNsku3fO3nYZbMQVgCAIgKMzIQdXrtX6j_e3m_LNfVz2nSuLevqZF7RC_l5Qz40lLXlM-2xncKtA81-9pTdn5_dLS758ubianG65BlqaDkpRzqPnU5TTGWCRknUzhQ6yeOoyAuREioaBoXLtFE5ujhyiIXQKkUAOWUHY2_j601HobWruvPV8NKiQQStjYwHCkcq83UIngrb-PLJ-d4KsF9W7GjFDlbstxWrhpAcQ2GAq0fyf9X_pD4BFONkfw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hegade, Abhiram</creator><creator>Daftardar-Gejji, Varsha</creator><creator>Bhalekar, Sachin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9569-9413</orcidid><orcidid>https://orcid.org/0000-0002-0277-462X</orcidid><orcidid>https://orcid.org/0000-0003-1981-8171</orcidid></search><sort><creationdate>2024</creationdate><title>Maxey–Riley equation: newer perspective</title><author>Hegade, Abhiram ; Daftardar-Gejji, Varsha ; Bhalekar, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e5ae7d6a7bb2b38295327a9f78d64fdf1be25ee2521ac795d2a64a22f175b2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Nonuniform flow</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hegade, Abhiram</creatorcontrib><creatorcontrib>Daftardar-Gejji, Varsha</creatorcontrib><creatorcontrib>Bhalekar, Sachin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hegade, Abhiram</au><au>Daftardar-Gejji, Varsha</au><au>Bhalekar, Sachin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maxey–Riley equation: newer perspective</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>85</spage><epage>97</epage><pages>85-97</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-023-01268-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9569-9413</orcidid><orcidid>https://orcid.org/0000-0002-0277-462X</orcidid><orcidid>https://orcid.org/0000-0003-1981-8171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2024, Vol.12 (1), p.85-97 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2922077936 |
source | SpringerLink Journals - AutoHoldings |
subjects | Complexity Control Control and Systems Theory Differential equations Dynamical Systems Engineering Fractional calculus Nonuniform flow Vibration |
title | Maxey–Riley equation: newer perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maxey%E2%80%93Riley%20equation:%20newer%20perspective&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Hegade,%20Abhiram&rft.date=2024&rft.volume=12&rft.issue=1&rft.spage=85&rft.epage=97&rft.pages=85-97&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-023-01268-5&rft_dat=%3Cproquest_cross%3E2922077936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922077936&rft_id=info:pmid/&rfr_iscdi=true |