Maxey–Riley equation: newer perspective

Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2024, Vol.12 (1), p.85-97
Hauptverfasser: Hegade, Abhiram, Daftardar-Gejji, Varsha, Bhalekar, Sachin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics.
ISSN:2195-268X
2195-2698
DOI:10.1007/s40435-023-01268-5