Unifying heat transport model for the transition between buoyancy-dominated and Lorentz-force-dominated regimes in quasistatic magnetoconvection

In magnetoconvection, the flow of an electromagnetically conductive fluid is driven by a combination of buoyancy forces, which create the fluid motion due to thermal expansion and contraction, and Lorentz forces, which distort the convective flow structure in the presence of a magnetic field. The di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-02, Vol.980, Article R3
Hauptverfasser: Teimurazov, Andrei, McCormack, Matthew, Linkmann, Moritz, Shishkina, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In magnetoconvection, the flow of an electromagnetically conductive fluid is driven by a combination of buoyancy forces, which create the fluid motion due to thermal expansion and contraction, and Lorentz forces, which distort the convective flow structure in the presence of a magnetic field. The differences in the global flow structures in the buoyancy-dominated and Lorentz-force-dominated regimes lead to different heat transport properties in these regimes, reflected in distinct dimensionless scaling relations of the global heat flux (Nusselt number $Nu$) versus the strength of buoyancy (Rayleigh number $Ra$) and electromagnetic forces (Hartmann number $Ha$). Here, we propose a theoretical model for the transition between these two regimes for the case of a static vertical magnetic field applied across a convective fluid layer confined between two isothermal, a lower warmer and an upper colder, horizontal surfaces. The model suggests that the scaling exponents $\gamma$ in the buoyancy-dominated regime, $Nu\sim Ra ^\gamma$, and $\xi$ in the Lorentz-force-dominated regime, $Nu\sim (Ha^{-2}Ra)^\xi$, are related as $\xi =\gamma /(1-2\gamma )$, and the onset of the transition scales with $Ha^{-1/\gamma }Ra$. These theoretical results are supported by our direct numerical simulations for $10\leq Ha\leq 2000$, Prandtl number $Pr=0.025$ and $Ra$ up to $10^9$ and data from the literature.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.33