Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates

Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2024-02, Vol.156 (1), p.1-38
Hauptverfasser: Carstensen, Carsten, Puttkammer, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 1
container_title Numerische Mathematik
container_volume 156
creator Carstensen, Carsten
Puttkammer, Sophie
description Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L 2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.
doi_str_mv 10.1007/s00211-023-01382-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921735423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921735423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cd45f95910c0ef573306d72c8cca5d8ee1aa7d8e35b12ae5c6f54069824079893</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytdkcS1GrFLwoeAtpdra2rLs12W3x3xtdwZunmcPzvjM8hFxyuOYA5iYBCM4ZCMmAy1Kw8ohMwCrNpFD6OO8gLNPWvp6Ss5S2ANwUik_I46zyu36zR7oefPRtj1jRpjtgpLhZY7v3zYB01Q1tlehh07_RLuPvvqGha_cYMxKQRt9jOicntW8SXvzOKXm5u32eL9jy6f5hPluyILnqWaiUrq22HAJgrY2UUFRGhDIEr6sSkXtv8pR6xYVHHYpaKyhsKRQYW1o5JVdj7y52HwOm3m27Ibb5pBNWcCO1EjJTYqRC7FKKWLtdzH_HT8fBfTtzozOXnbkfZ67MITmGUobbNca_6n9SX9V0b0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921735423</pqid></control><display><type>article</type><title>Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates</title><source>SpringerNature Journals</source><creator>Carstensen, Carsten ; Puttkammer, Sophie</creator><creatorcontrib>Carstensen, Carsten ; Puttkammer, Sophie</creatorcontrib><description>Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L 2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-023-01382-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Axioms ; Convergence ; Dirichlet problem ; Eigenvalues ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2024-02, Vol.156 (1), p.1-38</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cd45f95910c0ef573306d72c8cca5d8ee1aa7d8e35b12ae5c6f54069824079893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-023-01382-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-023-01382-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carstensen, Carsten</creatorcontrib><creatorcontrib>Puttkammer, Sophie</creatorcontrib><title>Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L 2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.</description><subject>Adaptive algorithms</subject><subject>Axioms</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytdkcS1GrFLwoeAtpdra2rLs12W3x3xtdwZunmcPzvjM8hFxyuOYA5iYBCM4ZCMmAy1Kw8ohMwCrNpFD6OO8gLNPWvp6Ss5S2ANwUik_I46zyu36zR7oefPRtj1jRpjtgpLhZY7v3zYB01Q1tlehh07_RLuPvvqGha_cYMxKQRt9jOicntW8SXvzOKXm5u32eL9jy6f5hPluyILnqWaiUrq22HAJgrY2UUFRGhDIEr6sSkXtv8pR6xYVHHYpaKyhsKRQYW1o5JVdj7y52HwOm3m27Ibb5pBNWcCO1EjJTYqRC7FKKWLtdzH_HT8fBfTtzozOXnbkfZ67MITmGUobbNca_6n9SX9V0b0o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Carstensen, Carsten</creator><creator>Puttkammer, Sophie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates</title><author>Carstensen, Carsten ; Puttkammer, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cd45f95910c0ef573306d72c8cca5d8ee1aa7d8e35b12ae5c6f54069824079893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Axioms</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carstensen, Carsten</creatorcontrib><creatorcontrib>Puttkammer, Sophie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carstensen, Carsten</au><au>Puttkammer, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>156</volume><issue>1</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L 2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-023-01382-8</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2024-02, Vol.156 (1), p.1-38
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2921735423
source SpringerNature Journals
subjects Adaptive algorithms
Axioms
Convergence
Dirichlet problem
Eigenvalues
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20guaranteed%20lower%20eigenvalue%20bounds%20with%20optimal%20convergence%20rates&rft.jtitle=Numerische%20Mathematik&rft.au=Carstensen,%20Carsten&rft.date=2024-02-01&rft.volume=156&rft.issue=1&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-023-01382-8&rft_dat=%3Cproquest_cross%3E2921735423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921735423&rft_id=info:pmid/&rfr_iscdi=true