Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates

Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2024-02, Vol.156 (1), p.1-38
Hauptverfasser: Carstensen, Carsten, Puttkammer, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m -th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix–Raviart ( m = 1 ) or Morley ( m = 2 ) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L 2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01382-8