High key rate continuous-variable quantum key distribution using telecom optical components
Quantum key distribution (QKD) is one quantum technology that can provide secure encryption keys for data transmission. The secret key rate (SKR) is a core performance indicator in QKD, which directly determines the transmission rate of enciphered data. Here, for the first time, we demonstrate a hig...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2024-02, Vol.26 (2), p.23002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum key distribution (QKD) is one quantum technology that can provide secure encryption keys for data transmission. The secret key rate (SKR) is a core performance indicator in QKD, which directly determines the transmission rate of enciphered data. Here, for the first time, we demonstrate a high-key-rate Gaussian-modulated continuous-variable QKD (CV-QKD) using telecom optical components. The framework of CV-QKD over these components is constructed. Specifically, the high-rate low-noise Gaussian modulation of coherent states is realized by a classical optical IQ modulator. High-baud low-intensity quantum signals are received by an integrated coherent receiver under the shot-noise limit. A series of digital signal processing algorithms are proposed to achieve accurate signal recovery and key distillation. The system can yield a high asymptotic SKR of 10.37 Mbps within 20 km standard telecom fiber, and the secure distance can exceed 100 km. This result confirms the feasibility of CV-QKD with state-of-the-art performance using telecom optical components. Besides, due to the ease of integrating these discrete components, it provides a high-performance and miniaturized QKD solution for the metropolitan quantum network. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ad1b7e |