An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks

With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-02, Vol.83 (6), p.17251-17279
Hauptverfasser: Yang, Peng, Jiang, Siming, Yi, Meng, Li, Bing, Sun, Yuankang, Ma, Ruochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17279
container_issue 6
container_start_page 17251
container_title Multimedia tools and applications
container_volume 83
creator Yang, Peng
Jiang, Siming
Yi, Meng
Li, Bing
Sun, Yuankang
Ma, Ruochen
description With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines.
doi_str_mv 10.1007/s11042-023-16102-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921399193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921399193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b94aef86b8dc5112bc3e1fb57b2a2b0d7558f543a8a56125886f94917ae068923</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKd_wKuA19GcpGmbyzH8AsEbvQ5pm5Rua1KTbDLxx5ttil55lUN43udw3iy7BHINhJQ3AYDkFBPKMBRAKOZH2QR4yXBZUjj-M59mZyEsCIGC03ySfc4scmPsh_5Dt0jbTe-dHbSNWLUq_W80atwwrqOKvUuoMSun2t52KESvou62yDiPvFYrnCyJ9i4E3KhBe4WiCkvUW6Tb7sezi1od351fhvPsxKhV0Bff7zR7vbt9mT_gp-f7x_nsCTcMRMS1yJU2VVFXbcMBaN0wDabmZU0VrUlbcl4ZnjNVKV4A5VVVGJELKJUmRSUom2ZXB-_o3dtahygXbu1tWimpoMCEAMESRQ_U_gSvjRx9Pyi_lUDkrmV5aFmmluW-ZclTiB1CIcG20_5X_U_qCzGQgio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921399193</pqid></control><display><type>article</type><title>An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks</title><source>SpringerNature Journals</source><creator>Yang, Peng ; Jiang, Siming ; Yi, Meng ; Li, Bing ; Sun, Yuankang ; Ma, Ruochen</creator><creatorcontrib>Yang, Peng ; Jiang, Siming ; Yi, Meng ; Li, Bing ; Sun, Yuankang ; Ma, Ruochen</creatorcontrib><description>With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16102-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cameras ; Computation offloading ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Edge computing ; Frames per second ; Machine learning ; Markov processes ; Multimedia Information Systems ; Multiple objective analysis ; Network topologies ; Optimization ; Real time ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-02, Vol.83 (6), p.17251-17279</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b94aef86b8dc5112bc3e1fb57b2a2b0d7558f543a8a56125886f94917ae068923</citedby><cites>FETCH-LOGICAL-c319t-b94aef86b8dc5112bc3e1fb57b2a2b0d7558f543a8a56125886f94917ae068923</cites><orcidid>0000-0002-1184-8117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16102-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16102-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Jiang, Siming</creatorcontrib><creatorcontrib>Yi, Meng</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Sun, Yuankang</creatorcontrib><creatorcontrib>Ma, Ruochen</creatorcontrib><title>An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Edge computing</subject><subject>Frames per second</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Multimedia Information Systems</subject><subject>Multiple objective analysis</subject><subject>Network topologies</subject><subject>Optimization</subject><subject>Real time</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKd_wKuA19GcpGmbyzH8AsEbvQ5pm5Rua1KTbDLxx5ttil55lUN43udw3iy7BHINhJQ3AYDkFBPKMBRAKOZH2QR4yXBZUjj-M59mZyEsCIGC03ySfc4scmPsh_5Dt0jbTe-dHbSNWLUq_W80atwwrqOKvUuoMSun2t52KESvou62yDiPvFYrnCyJ9i4E3KhBe4WiCkvUW6Tb7sezi1od351fhvPsxKhV0Bff7zR7vbt9mT_gp-f7x_nsCTcMRMS1yJU2VVFXbcMBaN0wDabmZU0VrUlbcl4ZnjNVKV4A5VVVGJELKJUmRSUom2ZXB-_o3dtahygXbu1tWimpoMCEAMESRQ_U_gSvjRx9Pyi_lUDkrmV5aFmmluW-ZclTiB1CIcG20_5X_U_qCzGQgio</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yang, Peng</creator><creator>Jiang, Siming</creator><creator>Yi, Meng</creator><creator>Li, Bing</creator><creator>Sun, Yuankang</creator><creator>Ma, Ruochen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1184-8117</orcidid></search><sort><creationdate>20240201</creationdate><title>An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks</title><author>Yang, Peng ; Jiang, Siming ; Yi, Meng ; Li, Bing ; Sun, Yuankang ; Ma, Ruochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b94aef86b8dc5112bc3e1fb57b2a2b0d7558f543a8a56125886f94917ae068923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Edge computing</topic><topic>Frames per second</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Multimedia Information Systems</topic><topic>Multiple objective analysis</topic><topic>Network topologies</topic><topic>Optimization</topic><topic>Real time</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Jiang, Siming</creatorcontrib><creatorcontrib>Yi, Meng</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Sun, Yuankang</creatorcontrib><creatorcontrib>Ma, Ruochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Peng</au><au>Jiang, Siming</au><au>Yi, Meng</au><au>Li, Bing</au><au>Sun, Yuankang</au><au>Ma, Ruochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>83</volume><issue>6</issue><spage>17251</spage><epage>17279</epage><pages>17251-17279</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16102-5</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1184-8117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-02, Vol.83 (6), p.17251-17279
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2921399193
source SpringerNature Journals
subjects Algorithms
Cameras
Computation offloading
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Edge computing
Frames per second
Machine learning
Markov processes
Multimedia Information Systems
Multiple objective analysis
Network topologies
Optimization
Real time
Special Purpose and Application-Based Systems
title An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20environment-adaptive%20computation%20offloading%20strategy%20for%20real-time%20cross-camera%20task%20in%20edge%20computing%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yang,%20Peng&rft.date=2024-02-01&rft.volume=83&rft.issue=6&rft.spage=17251&rft.epage=17279&rft.pages=17251-17279&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16102-5&rft_dat=%3Cproquest_cross%3E2921399193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921399193&rft_id=info:pmid/&rfr_iscdi=true