An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks
With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subt...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-02, Vol.83 (6), p.17251-17279 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines. |
---|---|
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-16102-5 |