An optimized environment-adaptive computation offloading strategy for real-time cross-camera task in edge computing networks

With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-02, Vol.83 (6), p.17251-17279
Hauptverfasser: Yang, Peng, Jiang, Siming, Yi, Meng, Li, Bing, Sun, Yuankang, Ma, Ruochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the large-scale establishment of cross-camera networks, edge computing plays an important role in real-time tasks with its abundant edge resources and flexible task offloading strategy. Conventional studies usually utilize cross-camera network topology and real-time task status to generate subtask offloading strategies. However, most existed approaches focus on utilizing static environment information to generate a fixed offloading strategy for single-target optimization, while dynamic environment information and joint optimization objectives are often ignored. In this paper, we model the computing process of cross-camera tasks as a Markov Decision Process (MDP) integrating spatiotemporal correlation, to make full use of the dynamic environment information in the edge computing network. In addition, to achieve multi-objective optimization of cross-camera tasks, this paper develops a joint Q learning equation that integrates multiple utility indicators and proposes a Deep Spatio-Temporal Q Learning (Deep-STQL) algorithm to solve the equation. Based on the camera frame rate and cross-camera task frame rate, a large number of experimental data show that our proposed Deep-STQL algorithm has significantly improved the convergence, hit rate, average processing delay, drop rate of subtask and computing load of real-time cross-camera tasks compared with the baselines.
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-023-16102-5