Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation

Based on integrable Hamiltonian systems related to the derivative Schwarzian Korteweg-de Vries (SKdV) equation, a novel discrete Lax pair for the lattice SKdV (lSKdV) equation is given by two copies of a Darboux transformation which can be used to derive an integrable symplectic correspondence. Reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2020-10, Vol.27 (4), p.633-646
Hauptverfasser: Xu, Xiaoxue, Cao, Cewen, Zhang, Guangyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on integrable Hamiltonian systems related to the derivative Schwarzian Korteweg-de Vries (SKdV) equation, a novel discrete Lax pair for the lattice SKdV (lSKdV) equation is given by two copies of a Darboux transformation which can be used to derive an integrable symplectic correspondence. Resorting to the dis- crete version of Liouville-Arnold theorem, finite genus solutions to the lSKdV equation are calculated through Riemann surface method.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.1080/14029251.2020.1819608