Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation
Based on integrable Hamiltonian systems related to the derivative Schwarzian Korteweg-de Vries (SKdV) equation, a novel discrete Lax pair for the lattice SKdV (lSKdV) equation is given by two copies of a Darboux transformation which can be used to derive an integrable symplectic correspondence. Reso...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2020-10, Vol.27 (4), p.633-646 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on integrable Hamiltonian systems related to the derivative Schwarzian Korteweg-de Vries (SKdV) equation, a novel discrete Lax pair for the lattice SKdV (lSKdV) equation is given by two copies of a Darboux transformation which can be used to derive an integrable symplectic correspondence. Resorting to the dis- crete version of Liouville-Arnold theorem, finite genus solutions to the lSKdV equation are calculated through Riemann surface method. |
---|---|
ISSN: | 1402-9251 1776-0852 1776-0852 |
DOI: | 10.1080/14029251.2020.1819608 |