AToM: Amortized Text-to-Mesh using 2D Diffusion

We introduce Amortized Text-to-Mesh (AToM), a feed-forward text-to-mesh framework optimized across multiple text prompts simultaneously. In contrast to existing text-to-3D methods that often entail time-consuming per-prompt optimization and commonly output representations other than polygonal meshes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Qian, Guocheng, Cao, Junli, Siarohin, Aliaksandr, Kant, Yash, Wang, Chaoyang, Vasilkovsky, Michael, Hsin-Ying, Lee, Fang, Yuwei, Skorokhodov, Ivan, Zhuang, Peiye, Gilitschenski, Igor, Ren, Jian, Ghanem, Bernard, Aberman, Kfir, Tulyakov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qian, Guocheng
Cao, Junli
Siarohin, Aliaksandr
Kant, Yash
Wang, Chaoyang
Vasilkovsky, Michael
Hsin-Ying, Lee
Fang, Yuwei
Skorokhodov, Ivan
Zhuang, Peiye
Gilitschenski, Igor
Ren, Jian
Ghanem, Bernard
Aberman, Kfir
Tulyakov, Sergey
description We introduce Amortized Text-to-Mesh (AToM), a feed-forward text-to-mesh framework optimized across multiple text prompts simultaneously. In contrast to existing text-to-3D methods that often entail time-consuming per-prompt optimization and commonly output representations other than polygonal meshes, AToM directly generates high-quality textured meshes in less than 1 second with around 10 times reduction in the training cost, and generalizes to unseen prompts. Our key idea is a novel triplane-based text-to-mesh architecture with a two-stage amortized optimization strategy that ensures stable training and enables scalability. Through extensive experiments on various prompt benchmarks, AToM significantly outperforms state-of-the-art amortized approaches with over 4 times higher accuracy (in DF415 dataset) and produces more distinguishable and higher-quality 3D outputs. AToM demonstrates strong generalizability, offering finegrained 3D assets for unseen interpolated prompts without further optimization during inference, unlike per-prompt solutions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2921316909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921316909</sourcerecordid><originalsourceid>FETCH-proquest_journals_29213169093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdwzJ97VScMzNLyrJrEpNUQhJrSjRLcnX9U0tzlAoLc7MS1cwclFwyUxLA3Ly83gYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I0sjQ2NDM0sDSmDhVAKVOMZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921316909</pqid></control><display><type>article</type><title>AToM: Amortized Text-to-Mesh using 2D Diffusion</title><source>Free E- Journals</source><creator>Qian, Guocheng ; Cao, Junli ; Siarohin, Aliaksandr ; Kant, Yash ; Wang, Chaoyang ; Vasilkovsky, Michael ; Hsin-Ying, Lee ; Fang, Yuwei ; Skorokhodov, Ivan ; Zhuang, Peiye ; Gilitschenski, Igor ; Ren, Jian ; Ghanem, Bernard ; Aberman, Kfir ; Tulyakov, Sergey</creator><creatorcontrib>Qian, Guocheng ; Cao, Junli ; Siarohin, Aliaksandr ; Kant, Yash ; Wang, Chaoyang ; Vasilkovsky, Michael ; Hsin-Ying, Lee ; Fang, Yuwei ; Skorokhodov, Ivan ; Zhuang, Peiye ; Gilitschenski, Igor ; Ren, Jian ; Ghanem, Bernard ; Aberman, Kfir ; Tulyakov, Sergey</creatorcontrib><description>We introduce Amortized Text-to-Mesh (AToM), a feed-forward text-to-mesh framework optimized across multiple text prompts simultaneously. In contrast to existing text-to-3D methods that often entail time-consuming per-prompt optimization and commonly output representations other than polygonal meshes, AToM directly generates high-quality textured meshes in less than 1 second with around 10 times reduction in the training cost, and generalizes to unseen prompts. Our key idea is a novel triplane-based text-to-mesh architecture with a two-stage amortized optimization strategy that ensures stable training and enables scalability. Through extensive experiments on various prompt benchmarks, AToM significantly outperforms state-of-the-art amortized approaches with over 4 times higher accuracy (in DF415 dataset) and produces more distinguishable and higher-quality 3D outputs. AToM demonstrates strong generalizability, offering finegrained 3D assets for unseen interpolated prompts without further optimization during inference, unlike per-prompt solutions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Optimization ; Training</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qian, Guocheng</creatorcontrib><creatorcontrib>Cao, Junli</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Kant, Yash</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Vasilkovsky, Michael</creatorcontrib><creatorcontrib>Hsin-Ying, Lee</creatorcontrib><creatorcontrib>Fang, Yuwei</creatorcontrib><creatorcontrib>Skorokhodov, Ivan</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><creatorcontrib>Aberman, Kfir</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><title>AToM: Amortized Text-to-Mesh using 2D Diffusion</title><title>arXiv.org</title><description>We introduce Amortized Text-to-Mesh (AToM), a feed-forward text-to-mesh framework optimized across multiple text prompts simultaneously. In contrast to existing text-to-3D methods that often entail time-consuming per-prompt optimization and commonly output representations other than polygonal meshes, AToM directly generates high-quality textured meshes in less than 1 second with around 10 times reduction in the training cost, and generalizes to unseen prompts. Our key idea is a novel triplane-based text-to-mesh architecture with a two-stage amortized optimization strategy that ensures stable training and enables scalability. Through extensive experiments on various prompt benchmarks, AToM significantly outperforms state-of-the-art amortized approaches with over 4 times higher accuracy (in DF415 dataset) and produces more distinguishable and higher-quality 3D outputs. AToM demonstrates strong generalizability, offering finegrained 3D assets for unseen interpolated prompts without further optimization during inference, unlike per-prompt solutions.</description><subject>Optimization</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdwzJ97VScMzNLyrJrEpNUQhJrSjRLcnX9U0tzlAoLc7MS1cwclFwyUxLA3Ly83gYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I0sjQ2NDM0sDSmDhVAKVOMZQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Qian, Guocheng</creator><creator>Cao, Junli</creator><creator>Siarohin, Aliaksandr</creator><creator>Kant, Yash</creator><creator>Wang, Chaoyang</creator><creator>Vasilkovsky, Michael</creator><creator>Hsin-Ying, Lee</creator><creator>Fang, Yuwei</creator><creator>Skorokhodov, Ivan</creator><creator>Zhuang, Peiye</creator><creator>Gilitschenski, Igor</creator><creator>Ren, Jian</creator><creator>Ghanem, Bernard</creator><creator>Aberman, Kfir</creator><creator>Tulyakov, Sergey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>AToM: Amortized Text-to-Mesh using 2D Diffusion</title><author>Qian, Guocheng ; Cao, Junli ; Siarohin, Aliaksandr ; Kant, Yash ; Wang, Chaoyang ; Vasilkovsky, Michael ; Hsin-Ying, Lee ; Fang, Yuwei ; Skorokhodov, Ivan ; Zhuang, Peiye ; Gilitschenski, Igor ; Ren, Jian ; Ghanem, Bernard ; Aberman, Kfir ; Tulyakov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29213169093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optimization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guocheng</creatorcontrib><creatorcontrib>Cao, Junli</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Kant, Yash</creatorcontrib><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Vasilkovsky, Michael</creatorcontrib><creatorcontrib>Hsin-Ying, Lee</creatorcontrib><creatorcontrib>Fang, Yuwei</creatorcontrib><creatorcontrib>Skorokhodov, Ivan</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><creatorcontrib>Aberman, Kfir</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guocheng</au><au>Cao, Junli</au><au>Siarohin, Aliaksandr</au><au>Kant, Yash</au><au>Wang, Chaoyang</au><au>Vasilkovsky, Michael</au><au>Hsin-Ying, Lee</au><au>Fang, Yuwei</au><au>Skorokhodov, Ivan</au><au>Zhuang, Peiye</au><au>Gilitschenski, Igor</au><au>Ren, Jian</au><au>Ghanem, Bernard</au><au>Aberman, Kfir</au><au>Tulyakov, Sergey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AToM: Amortized Text-to-Mesh using 2D Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-02-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce Amortized Text-to-Mesh (AToM), a feed-forward text-to-mesh framework optimized across multiple text prompts simultaneously. In contrast to existing text-to-3D methods that often entail time-consuming per-prompt optimization and commonly output representations other than polygonal meshes, AToM directly generates high-quality textured meshes in less than 1 second with around 10 times reduction in the training cost, and generalizes to unseen prompts. Our key idea is a novel triplane-based text-to-mesh architecture with a two-stage amortized optimization strategy that ensures stable training and enables scalability. Through extensive experiments on various prompt benchmarks, AToM significantly outperforms state-of-the-art amortized approaches with over 4 times higher accuracy (in DF415 dataset) and produces more distinguishable and higher-quality 3D outputs. AToM demonstrates strong generalizability, offering finegrained 3D assets for unseen interpolated prompts without further optimization during inference, unlike per-prompt solutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2921316909
source Free E- Journals
subjects Optimization
Training
title AToM: Amortized Text-to-Mesh using 2D Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AToM:%20Amortized%20Text-to-Mesh%20using%202D%20Diffusion&rft.jtitle=arXiv.org&rft.au=Qian,%20Guocheng&rft.date=2024-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2921316909%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921316909&rft_id=info:pmid/&rfr_iscdi=true