Initial-boundary value problem for the two-component Gerdjikov-Ivanov equation on the interval

In this paper, we apply Fokas unified method to study initial-boundary value problems for the two-component Gerdjikov-Ivanov equation formulated on the finite interval with 3×3 Lax pairs. The solution can be expressed in terms of the solution of a 3×3 Riemann-Hilbert problem. The relevant jump matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2018-01, Vol.25 (1), p.136-165
Hauptverfasser: Zhu, Qiaozhen, Xu, Jian, Fan, Engui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we apply Fokas unified method to study initial-boundary value problems for the two-component Gerdjikov-Ivanov equation formulated on the finite interval with 3×3 Lax pairs. The solution can be expressed in terms of the solution of a 3×3 Riemann-Hilbert problem. The relevant jump matrices are explicitly given in terms of three matrix-value spectral functions s (λ), S (λ) and S L (λ), which arising from the initial values at t = 0, boundary values at x = 0 and boundary values at x = L, respectively. Moreover, The associated Dirichlet to Neumann map is analyzed via the global relation. The relevant formulae for boundary value problems on the finite interval can reduce to ones on the half-line as the length of the interval tends to infinity.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.1080/14029251.2018.1440747