A Two-Tier Fuzzy Meta-Heuristic Hybrid Optimization for Dynamic Android Malware Detection

Application Programming Interface (API) call feature analysis is the prominent method for dynamic android malware detection. Standard benchmark android malware API dataset includes features with high dimensionality. Not all features of the data are relevant, filtering unwanted features improves effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2023-03, Vol.4 (2), p.117, Article 117
Hauptverfasser: Santosh Jhansi, K., Chakravarty, Sujata, Ravi Kiran Varma, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Application Programming Interface (API) call feature analysis is the prominent method for dynamic android malware detection. Standard benchmark android malware API dataset includes features with high dimensionality. Not all features of the data are relevant, filtering unwanted features improves efficiency. This paper proposes a fuzzy and meta-heuristic optimization hybrid to eliminate insignificant features and improve the performance. In the first phase fuzzy benchmarking is used to select the top best features, and in the second phase meta-heuristic optimization algorithms viz., Moth Flame Optimization (MFO), Multi-Verse Optimization (MVO) & Whale Optimization (WO) are run with Machine Learning (ML) wrappers to select the best from the rest. Five ML methods viz., Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB) & Nearest Centroid (NC) are compared as wrappers. Several experiments are conducted and among them, the best post reduction accuracy of 98.34% is recorded with 95% elimination of features. The proposed novel method outperformed among the existing works on the same dataset.
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-022-01523-0