Monotone Diameter of Bisubmodular Polyhedra

Finding sharp bounds on the diameter of polyhedra is a fundamental problem in discrete mathematics and computational geometry. In particular, the monotone diameter and height play an important role in determining the number of iterations by operating the pivot rule of the simplex method for linear p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations Research Forum 2023-12, Vol.4 (4), p.1-16, Article 76
Hauptverfasser: Matsui, Yasuko, Sukegawa, Noriyoshi, Zhan, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding sharp bounds on the diameter of polyhedra is a fundamental problem in discrete mathematics and computational geometry. In particular, the monotone diameter and height play an important role in determining the number of iterations by operating the pivot rule of the simplex method for linear programming. In this study, for a d -dimensional polytope defined by at most 3 d - 1 linear inequality induced by functions called bisubmodular, we prove that the diameter, monotone diameter, and height are coincide, and the tight upper bound is d 2 .
ISSN:2662-2556
2662-2556
DOI:10.1007/s43069-023-00260-1