Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols
Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2009-01, Vol.16 (4), p.373-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 4 |
container_start_page | 373 |
container_title | Journal of nonlinear mathematical physics |
container_volume | 16 |
creator | Basdouri, Imed Ammar, Mabrouk Ben Fraj, Nizar Ben Boujelbene, Maha Kamoun, Kaouthar |
description | Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace. |
doi_str_mv | 10.1142/S1402925109000431 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2921032647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921032647</sourcerecordid><originalsourceid>FETCH-proquest_journals_29210326473</originalsourceid><addsrcrecordid>eNqNj71Ow0AQhE8IJMLPA9CtRIth9-zYTm2IKOiMaKOLs04cnb3m7lxE4lV4B54BXgwbQU81o_lGI41SV4S3RIm-KylBvdBzwgUiJjEdqRllWRphPtfHox9xNPFTdeb9HjHO0jyfqaGQnbRiZXsAqSHsGJ4ahnLo2Rm75bUzU15IF0wV4IWrIA6WDduNB-ng6-Pz_YbeCEy3gXuuxbUmNNL5v7WfJd-biqekPLRrsf5CndTGer781XN1vXx4Lh6j3snrwD6s9jK4bkSr8RRhrNMki__X-gby4FMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921032647</pqid></control><display><type>article</type><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</creator><creatorcontrib>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</creatorcontrib><description>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</description><identifier>ISSN: 1402-9251</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1142/S1402925109000431</identifier><language>eng</language><publisher>Singapore: Springer Nature B.V</publisher><subject>Deformation ; Differential equations ; Fields (mathematics) ; Homology ; Lie groups ; Mathematical analysis ; Modules ; Operators (mathematics) ; Polynomials ; Symbols</subject><ispartof>Journal of nonlinear mathematical physics, 2009-01, Vol.16 (4), p.373-409</ispartof><rights>I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kamoun 2009. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Basdouri, Imed</creatorcontrib><creatorcontrib>Ammar, Mabrouk Ben</creatorcontrib><creatorcontrib>Fraj, Nizar Ben</creatorcontrib><creatorcontrib>Boujelbene, Maha</creatorcontrib><creatorcontrib>Kamoun, Kaouthar</creatorcontrib><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><title>Journal of nonlinear mathematical physics</title><description>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</description><subject>Deformation</subject><subject>Differential equations</subject><subject>Fields (mathematics)</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Symbols</subject><issn>1402-9251</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNj71Ow0AQhE8IJMLPA9CtRIth9-zYTm2IKOiMaKOLs04cnb3m7lxE4lV4B54BXgwbQU81o_lGI41SV4S3RIm-KylBvdBzwgUiJjEdqRllWRphPtfHox9xNPFTdeb9HjHO0jyfqaGQnbRiZXsAqSHsGJ4ahnLo2Rm75bUzU15IF0wV4IWrIA6WDduNB-ng6-Pz_YbeCEy3gXuuxbUmNNL5v7WfJd-biqekPLRrsf5CndTGer781XN1vXx4Lh6j3snrwD6s9jK4bkSr8RRhrNMki__X-gby4FMn</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Basdouri, Imed</creator><creator>Ammar, Mabrouk Ben</creator><creator>Fraj, Nizar Ben</creator><creator>Boujelbene, Maha</creator><creator>Kamoun, Kaouthar</creator><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20090101</creationdate><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><author>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29210326473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Deformation</topic><topic>Differential equations</topic><topic>Fields (mathematics)</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basdouri, Imed</creatorcontrib><creatorcontrib>Ammar, Mabrouk Ben</creatorcontrib><creatorcontrib>Fraj, Nizar Ben</creatorcontrib><creatorcontrib>Boujelbene, Maha</creatorcontrib><creatorcontrib>Kamoun, Kaouthar</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basdouri, Imed</au><au>Ammar, Mabrouk Ben</au><au>Fraj, Nizar Ben</au><au>Boujelbene, Maha</au><au>Kamoun, Kaouthar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>373</spage><epage>409</epage><pages>373-409</pages><issn>1402-9251</issn><eissn>1776-0852</eissn><abstract>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</abstract><cop>Singapore</cop><pub>Springer Nature B.V</pub><doi>10.1142/S1402925109000431</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1402-9251 |
ispartof | Journal of nonlinear mathematical physics, 2009-01, Vol.16 (4), p.373-409 |
issn | 1402-9251 1776-0852 |
language | eng |
recordid | cdi_proquest_journals_2921032647 |
source | SpringerLink Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Deformation Differential equations Fields (mathematics) Homology Lie groups Mathematical analysis Modules Operators (mathematics) Polynomials Symbols |
title | Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohomology%20of%20the%20Lie%20Superalgebra%20of%20Contact%20Vector%20Fields%20on%20%C3%B0%C2%9D,1%7C1%20and%20Deformations%20of%20the%20Superspace%20of%20Symbols&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Basdouri,%20Imed&rft.date=2009-01-01&rft.volume=16&rft.issue=4&rft.spage=373&rft.epage=409&rft.pages=373-409&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1142/S1402925109000431&rft_dat=%3Cproquest%3E2921032647%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921032647&rft_id=info:pmid/&rfr_iscdi=true |