Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols

Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2009-01, Vol.16 (4), p.373-409
Hauptverfasser: Basdouri, Imed, Ammar, Mabrouk Ben, Fraj, Nizar Ben, Boujelbene, Maha, Kamoun, Kaouthar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 4
container_start_page 373
container_title Journal of nonlinear mathematical physics
container_volume 16
creator Basdouri, Imed
Ammar, Mabrouk Ben
Fraj, Nizar Ben
Boujelbene, Maha
Kamoun, Kaouthar
description Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.
doi_str_mv 10.1142/S1402925109000431
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2921032647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921032647</sourcerecordid><originalsourceid>FETCH-proquest_journals_29210326473</originalsourceid><addsrcrecordid>eNqNj71Ow0AQhE8IJMLPA9CtRIth9-zYTm2IKOiMaKOLs04cnb3m7lxE4lV4B54BXgwbQU81o_lGI41SV4S3RIm-KylBvdBzwgUiJjEdqRllWRphPtfHox9xNPFTdeb9HjHO0jyfqaGQnbRiZXsAqSHsGJ4ahnLo2Rm75bUzU15IF0wV4IWrIA6WDduNB-ng6-Pz_YbeCEy3gXuuxbUmNNL5v7WfJd-biqekPLRrsf5CndTGer781XN1vXx4Lh6j3snrwD6s9jK4bkSr8RRhrNMki__X-gby4FMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921032647</pqid></control><display><type>article</type><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</creator><creatorcontrib>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</creatorcontrib><description>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</description><identifier>ISSN: 1402-9251</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1142/S1402925109000431</identifier><language>eng</language><publisher>Singapore: Springer Nature B.V</publisher><subject>Deformation ; Differential equations ; Fields (mathematics) ; Homology ; Lie groups ; Mathematical analysis ; Modules ; Operators (mathematics) ; Polynomials ; Symbols</subject><ispartof>Journal of nonlinear mathematical physics, 2009-01, Vol.16 (4), p.373-409</ispartof><rights>I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kamoun 2009. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Basdouri, Imed</creatorcontrib><creatorcontrib>Ammar, Mabrouk Ben</creatorcontrib><creatorcontrib>Fraj, Nizar Ben</creatorcontrib><creatorcontrib>Boujelbene, Maha</creatorcontrib><creatorcontrib>Kamoun, Kaouthar</creatorcontrib><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><title>Journal of nonlinear mathematical physics</title><description>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</description><subject>Deformation</subject><subject>Differential equations</subject><subject>Fields (mathematics)</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Symbols</subject><issn>1402-9251</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNj71Ow0AQhE8IJMLPA9CtRIth9-zYTm2IKOiMaKOLs04cnb3m7lxE4lV4B54BXgwbQU81o_lGI41SV4S3RIm-KylBvdBzwgUiJjEdqRllWRphPtfHox9xNPFTdeb9HjHO0jyfqaGQnbRiZXsAqSHsGJ4ahnLo2Rm75bUzU15IF0wV4IWrIA6WDduNB-ng6-Pz_YbeCEy3gXuuxbUmNNL5v7WfJd-biqekPLRrsf5CndTGer781XN1vXx4Lh6j3snrwD6s9jK4bkSr8RRhrNMki__X-gby4FMn</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Basdouri, Imed</creator><creator>Ammar, Mabrouk Ben</creator><creator>Fraj, Nizar Ben</creator><creator>Boujelbene, Maha</creator><creator>Kamoun, Kaouthar</creator><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20090101</creationdate><title>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</title><author>Basdouri, Imed ; Ammar, Mabrouk Ben ; Fraj, Nizar Ben ; Boujelbene, Maha ; Kamoun, Kaouthar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29210326473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Deformation</topic><topic>Differential equations</topic><topic>Fields (mathematics)</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basdouri, Imed</creatorcontrib><creatorcontrib>Ammar, Mabrouk Ben</creatorcontrib><creatorcontrib>Fraj, Nizar Ben</creatorcontrib><creatorcontrib>Boujelbene, Maha</creatorcontrib><creatorcontrib>Kamoun, Kaouthar</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basdouri, Imed</au><au>Ammar, Mabrouk Ben</au><au>Fraj, Nizar Ben</au><au>Boujelbene, Maha</au><au>Kamoun, Kaouthar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>373</spage><epage>409</epage><pages>373-409</pages><issn>1402-9251</issn><eissn>1776-0852</eissn><abstract>Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.</abstract><cop>Singapore</cop><pub>Springer Nature B.V</pub><doi>10.1142/S1402925109000431</doi></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2009-01, Vol.16 (4), p.373-409
issn 1402-9251
1776-0852
language eng
recordid cdi_proquest_journals_2921032647
source SpringerLink Journals; EZB-FREE-00999 freely available EZB journals
subjects Deformation
Differential equations
Fields (mathematics)
Homology
Lie groups
Mathematical analysis
Modules
Operators (mathematics)
Polynomials
Symbols
title Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohomology%20of%20the%20Lie%20Superalgebra%20of%20Contact%20Vector%20Fields%20on%20%C3%B0%C2%9D,1%7C1%20and%20Deformations%20of%20the%20Superspace%20of%20Symbols&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Basdouri,%20Imed&rft.date=2009-01-01&rft.volume=16&rft.issue=4&rft.spage=373&rft.epage=409&rft.pages=373-409&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1142/S1402925109000431&rft_dat=%3Cproquest%3E2921032647%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921032647&rft_id=info:pmid/&rfr_iscdi=true