Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols

Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2009-01, Vol.16 (4), p.373-409
Hauptverfasser: Basdouri, Imed, Ammar, Mabrouk Ben, Fraj, Nizar Ben, Boujelbene, Maha, Kamoun, Kaouthar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace.
ISSN:1402-9251
1776-0852
DOI:10.1142/S1402925109000431