Cohomology of the Lie Superalgebra of Contact Vector Fields on ð,1|1 and Deformations of the Superspace of Symbols
Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2009-01, Vol.16 (4), p.373-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(1|2)-trivial deformations of the K(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-trivial deformation of this K(1)-module is equivalent to a polynomial one of degree ≤ 4. This work is the simplest superization of a result by Bouarroudj [On sl(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112–127]. Further superizations correspond to osp(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1|N-dimensional superspace. |
---|---|
ISSN: | 1402-9251 1776-0852 |
DOI: | 10.1142/S1402925109000431 |