Multi-Scale Mahalanobis Kernel-Based Support Vector Machine for Classification of High-Resolution Remote Sensing Images
Support vector machine (SVM) is a powerful cognitive and learning algorithm in the domain of pattern recognition and image classification. However, the generalization ability of SVM is limited when processing classification of high-resolution remote sensing images. One chief reason for this is that...
Gespeichert in:
Veröffentlicht in: | Cognitive computation 2021-07, Vol.13 (4), p.787-794 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Support vector machine (SVM) is a powerful cognitive and learning algorithm in the domain of pattern recognition and image classification. However, the generalization ability of SVM is limited when processing classification of high-resolution remote sensing images. One chief reason for this is that the Euclidean distance-based distance matrix in traditional SVM treats different samples equally and overlooks the global distribution of samples. To construct a more effective SVM-based classification method, this paper proposes a multi-scale Mahalanobis kernel-based SVM classifier. In this new method, we first introduce a Mahalanobis distance kernel to improve the global cognitive learning ability of SVM. Then, the Mahalanobis distance kernel is embedded to the multi-scale kernel learning (MSKL) to construct a novel multi-scale Mahalanobis kernel, in which the parameters are optimized by a bio-inspired algorithm, named differential evolution. Finally, the new method is extended to the classification of high-resolution remote sensing images based on the spatial-spectral features. The comparison experiments of five public UCI datasets and two high-resolution remote sensing images verify that the Mahalanobis distance-based method can obtain more accurate classification results than that of the Euclidean distance-based method. In addition, the proposed method produced the best classification results in all the experiments. The global cognitive learning ability of Mahalanobis distance-based method is stronger than that of the Euclidean distance-based method. In addition, this study indicates that the optimized MSKL are potential for the interpretation and understanding of complicated high-resolution remote sensing scene. |
---|---|
ISSN: | 1866-9956 1866-9964 |
DOI: | 10.1007/s12559-019-09631-5 |