Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey

Large, pre-trained language models (PLMs) such as BERT and GPT have drastically changed the Natural Language Processing (NLP) field. For numerous NLP tasks, approaches leveraging PLMs have achieved state-of-the-art performance. The key idea is to learn a generic, latent representation of language fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2024-02, Vol.56 (2), p.1-40, Article 30
Hauptverfasser: Min, Bonan, Ross, Hayley, Sulem, Elior, Veyseh, Amir Pouran Ben, Nguyen, Thien Huu, Sainz, Oscar, Agirre, Eneko, Heintz, Ilana, Roth, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large, pre-trained language models (PLMs) such as BERT and GPT have drastically changed the Natural Language Processing (NLP) field. For numerous NLP tasks, approaches leveraging PLMs have achieved state-of-the-art performance. The key idea is to learn a generic, latent representation of language from a generic task once, then share it across disparate NLP tasks. Language modeling serves as the generic task, one with abundant self-supervised text available for extensive training. This article presents the key fundamental concepts of PLM architectures and a comprehensive view of the shift to PLM-driven NLP techniques. It surveys work applying the pre-training then fine-tuning, prompting, and text generation approaches. In addition, it discusses PLM limitations and suggested directions for future research.
ISSN:0360-0300
1557-7341
DOI:10.1145/3605943