Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries

Numerous irregular graph datasets, for example social networks or web graphs, may contain even trillions of edges. Often, their structure changes over time and they have domain-specific rich data associated with vertices and edges. Graph database systems such as Neo4j enable storing, processing, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2023-09, Vol.56 (2), p.1-40, Article 31
Hauptverfasser: Besta, Maciej, Gerstenberger, Robert, Peter, Emanuel, Fischer, Marc, Podstawski, Michał, Barthels, Claude, Alonso, Gustavo, Hoefler, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous irregular graph datasets, for example social networks or web graphs, may contain even trillions of edges. Often, their structure changes over time and they have domain-specific rich data associated with vertices and edges. Graph database systems such as Neo4j enable storing, processing, and analyzing such large, evolving, and rich datasets. Due to the sheer size and irregularity of such datasets, these systems face unique design challenges. To facilitate the understanding of this emerging domain, we present the first survey and taxonomy of graph database systems. We focus on identifying and analyzing fundamental categories of these systems (e.g., document stores, tuple stores, native graph database systems, or object-oriented systems), the associated graph models (e.g., Resource Description Framework or Labeled Property Graph), data organization techniques (e.g., storing graph data in indexing structures or dividing data into records), and different aspects of data distribution and query execution (e.g., support for sharding and Atomicity, Consistency, Isolation, Durability). Fifty-one graph database systems are presented and compared, including Neo4j, OrientDB, and Virtuoso. We outline graph database queries and relationships with associated domains (NoSQL stores, graph streaming, and dynamic graph algorithms). Finally, we outline future research and engineering challenges related to graph databases.
ISSN:0360-0300
1557-7341
DOI:10.1145/3604932