Silicon Material Based Tunnel FET for Controlling Ambipolar Current

This paper highlights the reduction in ambipolar current by controlling various parameters for gate-drain overlapped structure of nanoscale TFET. In Conventional Tunnel Field Effect Transistor (TFET) the barrier width of tunneling at source-channel and channel-drain region is supervised by voltage a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2022-08, Vol.14 (12), p.6713-6718
Hauptverfasser: Bala, Shashi, Singh, Harpal, Kamboj, Priyanka, Raj, Balwant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6718
container_issue 12
container_start_page 6713
container_title SILICON
container_volume 14
creator Bala, Shashi
Singh, Harpal
Kamboj, Priyanka
Raj, Balwant
description This paper highlights the reduction in ambipolar current by controlling various parameters for gate-drain overlapped structure of nanoscale TFET. In Conventional Tunnel Field Effect Transistor (TFET) the barrier width of tunneling at source-channel and channel-drain region is supervised by voltage at gate. The gate-drain overlapped, restricts the effect of gate voltage to source-channel region, resulting in minimization of ambipolar current. Also, irregular overlapping of gate on drain further helps to accomplish minimum ambipolar current. The effects of device parameters such as gate-on-drain overlapping, oxide thickness on drain current, drain doping, gate dielectric thickness, gate dielectric constant have been observed through simulation. This paper examines the performance of TFET at charge density by varying biasing condition, and different dielectric constant for biomolecule sensing applications.
doi_str_mv 10.1007/s12633-021-01452-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920656682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920656682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f90a4563441a8bbf9b0f0f72d860783cbdb7a05d9600fc0c9d2af0dc7f42f0283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPEcnaZuP41r8ghUPruAtpG2ydMkmNWkP_nu7VvTmXGYY3mcGHoQuCVwTAH6TCGV5joESDKQoKaYnaEEEZ1hKIk5_Z3g_R6uU9jBVTrlgcoGq1851TfDZsx5M7LTLbnUybbYdvTcuu7_bZjbErAp-iMG5zu-y9aHu-uD0tB1jNH64QGdWu2RWP32J3iauesSbl4enar3BDeUwYCtBFyXLi4JoUddW1mDBctoKBlzkTd3WXEPZSgZgG2hkS7WFtuG2oBaoyJfoar7bx_AxmjSofRijn14qKimwkjFBpxSdU00MKUVjVR-7g46fioA6-lKzLzX5Ut--1BHKZyhNYb8z8e_0P9QX5vJsdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920656682</pqid></control><display><type>article</type><title>Silicon Material Based Tunnel FET for Controlling Ambipolar Current</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Bala, Shashi ; Singh, Harpal ; Kamboj, Priyanka ; Raj, Balwant</creator><creatorcontrib>Bala, Shashi ; Singh, Harpal ; Kamboj, Priyanka ; Raj, Balwant</creatorcontrib><description>This paper highlights the reduction in ambipolar current by controlling various parameters for gate-drain overlapped structure of nanoscale TFET. In Conventional Tunnel Field Effect Transistor (TFET) the barrier width of tunneling at source-channel and channel-drain region is supervised by voltage at gate. The gate-drain overlapped, restricts the effect of gate voltage to source-channel region, resulting in minimization of ambipolar current. Also, irregular overlapping of gate on drain further helps to accomplish minimum ambipolar current. The effects of device parameters such as gate-on-drain overlapping, oxide thickness on drain current, drain doping, gate dielectric thickness, gate dielectric constant have been observed through simulation. This paper examines the performance of TFET at charge density by varying biasing condition, and different dielectric constant for biomolecule sensing applications.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-021-01452-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomolecules ; Charge density ; Chemistry ; Chemistry and Materials Science ; Electric potential ; Environmental Chemistry ; Field effect transistors ; Inorganic Chemistry ; Lasers ; Materials Science ; Optical Devices ; Optics ; Original Paper ; Parameters ; Permittivity ; Photonics ; Polymer Sciences ; Semiconductor devices ; Silicon ; Simulation ; Thickness ; Transistors ; Tunnels ; Voltage</subject><ispartof>SILICON, 2022-08, Vol.14 (12), p.6713-6718</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f90a4563441a8bbf9b0f0f72d860783cbdb7a05d9600fc0c9d2af0dc7f42f0283</cites><orcidid>0000-0003-2859-7702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-021-01452-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920656682?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Bala, Shashi</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><creatorcontrib>Kamboj, Priyanka</creatorcontrib><creatorcontrib>Raj, Balwant</creatorcontrib><title>Silicon Material Based Tunnel FET for Controlling Ambipolar Current</title><title>SILICON</title><addtitle>Silicon</addtitle><description>This paper highlights the reduction in ambipolar current by controlling various parameters for gate-drain overlapped structure of nanoscale TFET. In Conventional Tunnel Field Effect Transistor (TFET) the barrier width of tunneling at source-channel and channel-drain region is supervised by voltage at gate. The gate-drain overlapped, restricts the effect of gate voltage to source-channel region, resulting in minimization of ambipolar current. Also, irregular overlapping of gate on drain further helps to accomplish minimum ambipolar current. The effects of device parameters such as gate-on-drain overlapping, oxide thickness on drain current, drain doping, gate dielectric thickness, gate dielectric constant have been observed through simulation. This paper examines the performance of TFET at charge density by varying biasing condition, and different dielectric constant for biomolecule sensing applications.</description><subject>Biomolecules</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric potential</subject><subject>Environmental Chemistry</subject><subject>Field effect transistors</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Photonics</subject><subject>Polymer Sciences</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Thickness</subject><subject>Transistors</subject><subject>Tunnels</subject><subject>Voltage</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwVPEcnaZuP41r8ghUPruAtpG2ydMkmNWkP_nu7VvTmXGYY3mcGHoQuCVwTAH6TCGV5joESDKQoKaYnaEEEZ1hKIk5_Z3g_R6uU9jBVTrlgcoGq1851TfDZsx5M7LTLbnUybbYdvTcuu7_bZjbErAp-iMG5zu-y9aHu-uD0tB1jNH64QGdWu2RWP32J3iauesSbl4enar3BDeUwYCtBFyXLi4JoUddW1mDBctoKBlzkTd3WXEPZSgZgG2hkS7WFtuG2oBaoyJfoar7bx_AxmjSofRijn14qKimwkjFBpxSdU00MKUVjVR-7g46fioA6-lKzLzX5Ut--1BHKZyhNYb8z8e_0P9QX5vJsdA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bala, Shashi</creator><creator>Singh, Harpal</creator><creator>Kamboj, Priyanka</creator><creator>Raj, Balwant</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2859-7702</orcidid></search><sort><creationdate>20220801</creationdate><title>Silicon Material Based Tunnel FET for Controlling Ambipolar Current</title><author>Bala, Shashi ; Singh, Harpal ; Kamboj, Priyanka ; Raj, Balwant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f90a4563441a8bbf9b0f0f72d860783cbdb7a05d9600fc0c9d2af0dc7f42f0283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomolecules</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric potential</topic><topic>Environmental Chemistry</topic><topic>Field effect transistors</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Photonics</topic><topic>Polymer Sciences</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Thickness</topic><topic>Transistors</topic><topic>Tunnels</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bala, Shashi</creatorcontrib><creatorcontrib>Singh, Harpal</creatorcontrib><creatorcontrib>Kamboj, Priyanka</creatorcontrib><creatorcontrib>Raj, Balwant</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bala, Shashi</au><au>Singh, Harpal</au><au>Kamboj, Priyanka</au><au>Raj, Balwant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Material Based Tunnel FET for Controlling Ambipolar Current</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>6713</spage><epage>6718</epage><pages>6713-6718</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>This paper highlights the reduction in ambipolar current by controlling various parameters for gate-drain overlapped structure of nanoscale TFET. In Conventional Tunnel Field Effect Transistor (TFET) the barrier width of tunneling at source-channel and channel-drain region is supervised by voltage at gate. The gate-drain overlapped, restricts the effect of gate voltage to source-channel region, resulting in minimization of ambipolar current. Also, irregular overlapping of gate on drain further helps to accomplish minimum ambipolar current. The effects of device parameters such as gate-on-drain overlapping, oxide thickness on drain current, drain doping, gate dielectric thickness, gate dielectric constant have been observed through simulation. This paper examines the performance of TFET at charge density by varying biasing condition, and different dielectric constant for biomolecule sensing applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-021-01452-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2859-7702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2022-08, Vol.14 (12), p.6713-6718
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2920656682
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Biomolecules
Charge density
Chemistry
Chemistry and Materials Science
Electric potential
Environmental Chemistry
Field effect transistors
Inorganic Chemistry
Lasers
Materials Science
Optical Devices
Optics
Original Paper
Parameters
Permittivity
Photonics
Polymer Sciences
Semiconductor devices
Silicon
Simulation
Thickness
Transistors
Tunnels
Voltage
title Silicon Material Based Tunnel FET for Controlling Ambipolar Current
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Material%20Based%20Tunnel%20FET%20for%20Controlling%20Ambipolar%20Current&rft.jtitle=SILICON&rft.au=Bala,%20Shashi&rft.date=2022-08-01&rft.volume=14&rft.issue=12&rft.spage=6713&rft.epage=6718&rft.pages=6713-6718&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-021-01452-2&rft_dat=%3Cproquest_cross%3E2920656682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920656682&rft_id=info:pmid/&rfr_iscdi=true