On the balanced truncation error bound and sign parameters from arrowhead realizations
Balanced truncation and singular perturbation approximation for linear dynamical systems yield reduced order models that satisfy a well-known error bound involving the Hankel singular values. We show that this bound holds with equality for single-input, single-output systems, if the sign parameters...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2024-02, Vol.50 (1), Article 10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Balanced truncation and singular perturbation approximation for linear dynamical systems yield reduced order models that satisfy a well-known error bound involving the Hankel singular values. We show that this bound holds with equality for single-input, single-output systems, if the sign parameters corresponding to the truncated Hankel singular values are all equal. These signs are determined by a generalized state-space symmetry property of the corresponding linear model. For a special class of systems having arrowhead realizations, the signs can be determined directly from the off-diagonal entries of the corresponding arrowhead matrix. We describe how such arrowhead systems arise naturally in certain applications of network modeling and illustrate these results with a power system model that motivated this study. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-024-10105-y |