Exact solution of Boussinesq equations for propagation of nonlinear waves
In this paper, we consider two Boussinesq models that describe propagation of small-amplitude long water waves. Exact solutions of the classical Boussinesq equation that represent the interaction of wave packets and waves on solitons are found. We use the Hirota representation and computer algebra m...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2020-09, Vol.135 (9), p.723, Article 723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider two Boussinesq models that describe propagation of small-amplitude long water waves. Exact solutions of the classical Boussinesq equation that represent the interaction of wave packets and waves on solitons are found. We use the Hirota representation and computer algebra methods. Moreover, we find various solutions for one of the variants of the Boussinesq system. In particular, these solutions can be interpreted as the fusion and decay of solitary waves, as well as the interaction of more complex structures. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-020-00729-6 |