A local region proposals approach to instance segmentation for intestinal polyp detection
This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2023-05, Vol.14 (5), p.1591-1603 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1603 |
---|---|
container_issue | 5 |
container_start_page | 1591 |
container_title | International journal of machine learning and cybernetics |
container_volume | 14 |
creator | Hwang, Maxwell Qian, Yucheng Wu, Cai Jiang, Wei-Cheng Wang, Da Wei, Jingsun Ding, Kefeng Hwang, Kao-Shing |
description | This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation to force the successive autoencoder to learn important features acting as a denoising autoencoder. In other words, the autoencoder denoises the transient images generated in the precedent hetero-encoder training process by auto-associating the ground truth and its variants. A hard attention model classifies the segmented image and applies a local region proposal network (RPN) to the generation and aggression of bounding boxes only on the segmented images to allow a more precise detection such that computations on bounding boxes with less information are avoided. The proposed system can outperform current complex state-of-art methods like faster-R-CNN from the experiments on endoscopic images. |
doi_str_mv | 10.1007/s13042-022-01714-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920451200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920451200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-721ce2671c911f2bc53e51d61f0b70bd02043c0191ca23f275b6ef01315a8d63</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFhjQ_0JOgZ7e7km3ZxxD6CAR6yaE9CVmWUgfHciXlkL-vUpf21oVlB3ZmGIaQW4R7BBAPATnkLAOWFgXmWX5BZliVVVZB9Xb5iwVek0UIe0hTAufAZuR9SXunVU-92XVuoKN3owuqD1SNCSv9QaOj3RCiGrShwewOZogqnrnW-fSJJsRuSA6j608jbU00-vy-IVc2-ZjFz52T7dPjdvWSbV6f16vlJtMc65gJhtqwUqCuES1rdMFNgW2JFhoBTQsMcq4Ba9SKcctE0ZTGAnIsVNWWfE7uJtuU9vOYssi9O_qUJ0hWJ22BDCCx2MTS3oXgjZWj7w7KnySCPJcopxJlKlF-lyjzJOKTKCTysDP-z_of1RfaBnSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920451200</pqid></control><display><type>article</type><title>A local region proposals approach to instance segmentation for intestinal polyp detection</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hwang, Maxwell ; Qian, Yucheng ; Wu, Cai ; Jiang, Wei-Cheng ; Wang, Da ; Wei, Jingsun ; Ding, Kefeng ; Hwang, Kao-Shing</creator><creatorcontrib>Hwang, Maxwell ; Qian, Yucheng ; Wu, Cai ; Jiang, Wei-Cheng ; Wang, Da ; Wei, Jingsun ; Ding, Kefeng ; Hwang, Kao-Shing</creatorcontrib><description>This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation to force the successive autoencoder to learn important features acting as a denoising autoencoder. In other words, the autoencoder denoises the transient images generated in the precedent hetero-encoder training process by auto-associating the ground truth and its variants. A hard attention model classifies the segmented image and applies a local region proposal network (RPN) to the generation and aggression of bounding boxes only on the segmented images to allow a more precise detection such that computations on bounding boxes with less information are avoided. The proposed system can outperform current complex state-of-art methods like faster-R-CNN from the experiments on endoscopic images.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-022-01714-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Boxes ; Classification ; Coders ; Complex Systems ; Computational Intelligence ; Control ; Deep learning ; Engineering ; Image segmentation ; Instance segmentation ; Localization ; Mechatronics ; Medical imaging ; Original Article ; Pattern Recognition ; Polyps ; Proposals ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2023-05, Vol.14 (5), p.1591-1603</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-721ce2671c911f2bc53e51d61f0b70bd02043c0191ca23f275b6ef01315a8d63</citedby><cites>FETCH-LOGICAL-c319t-721ce2671c911f2bc53e51d61f0b70bd02043c0191ca23f275b6ef01315a8d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-022-01714-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920451200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21395,27931,27932,33751,41495,42564,43812,51326,64392,64396,72476</link.rule.ids></links><search><creatorcontrib>Hwang, Maxwell</creatorcontrib><creatorcontrib>Qian, Yucheng</creatorcontrib><creatorcontrib>Wu, Cai</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Wei, Jingsun</creatorcontrib><creatorcontrib>Ding, Kefeng</creatorcontrib><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><title>A local region proposals approach to instance segmentation for intestinal polyp detection</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation to force the successive autoencoder to learn important features acting as a denoising autoencoder. In other words, the autoencoder denoises the transient images generated in the precedent hetero-encoder training process by auto-associating the ground truth and its variants. A hard attention model classifies the segmented image and applies a local region proposal network (RPN) to the generation and aggression of bounding boxes only on the segmented images to allow a more precise detection such that computations on bounding boxes with less information are avoided. The proposed system can outperform current complex state-of-art methods like faster-R-CNN from the experiments on endoscopic images.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Boxes</subject><subject>Classification</subject><subject>Coders</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Polyps</subject><subject>Proposals</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtqwzAQFKWFhjQ_0JOgZ7e7km3ZxxD6CAR6yaE9CVmWUgfHciXlkL-vUpf21oVlB3ZmGIaQW4R7BBAPATnkLAOWFgXmWX5BZliVVVZB9Xb5iwVek0UIe0hTAufAZuR9SXunVU-92XVuoKN3owuqD1SNCSv9QaOj3RCiGrShwewOZogqnrnW-fSJJsRuSA6j608jbU00-vy-IVc2-ZjFz52T7dPjdvWSbV6f16vlJtMc65gJhtqwUqCuES1rdMFNgW2JFhoBTQsMcq4Ba9SKcctE0ZTGAnIsVNWWfE7uJtuU9vOYssi9O_qUJ0hWJ22BDCCx2MTS3oXgjZWj7w7KnySCPJcopxJlKlF-lyjzJOKTKCTysDP-z_of1RfaBnSs</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hwang, Maxwell</creator><creator>Qian, Yucheng</creator><creator>Wu, Cai</creator><creator>Jiang, Wei-Cheng</creator><creator>Wang, Da</creator><creator>Wei, Jingsun</creator><creator>Ding, Kefeng</creator><creator>Hwang, Kao-Shing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230501</creationdate><title>A local region proposals approach to instance segmentation for intestinal polyp detection</title><author>Hwang, Maxwell ; Qian, Yucheng ; Wu, Cai ; Jiang, Wei-Cheng ; Wang, Da ; Wei, Jingsun ; Ding, Kefeng ; Hwang, Kao-Shing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-721ce2671c911f2bc53e51d61f0b70bd02043c0191ca23f275b6ef01315a8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Boxes</topic><topic>Classification</topic><topic>Coders</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Polyps</topic><topic>Proposals</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Maxwell</creatorcontrib><creatorcontrib>Qian, Yucheng</creatorcontrib><creatorcontrib>Wu, Cai</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Wei, Jingsun</creatorcontrib><creatorcontrib>Ding, Kefeng</creatorcontrib><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Maxwell</au><au>Qian, Yucheng</au><au>Wu, Cai</au><au>Jiang, Wei-Cheng</au><au>Wang, Da</au><au>Wei, Jingsun</au><au>Ding, Kefeng</au><au>Hwang, Kao-Shing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local region proposals approach to instance segmentation for intestinal polyp detection</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>1591</spage><epage>1603</epage><pages>1591-1603</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation to force the successive autoencoder to learn important features acting as a denoising autoencoder. In other words, the autoencoder denoises the transient images generated in the precedent hetero-encoder training process by auto-associating the ground truth and its variants. A hard attention model classifies the segmented image and applies a local region proposal network (RPN) to the generation and aggression of bounding boxes only on the segmented images to allow a more precise detection such that computations on bounding boxes with less information are avoided. The proposed system can outperform current complex state-of-art methods like faster-R-CNN from the experiments on endoscopic images.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-022-01714-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2023-05, Vol.14 (5), p.1591-1603 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2920451200 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Automation Boxes Classification Coders Complex Systems Computational Intelligence Control Deep learning Engineering Image segmentation Instance segmentation Localization Mechatronics Medical imaging Original Article Pattern Recognition Polyps Proposals Robotics Systems Biology |
title | A local region proposals approach to instance segmentation for intestinal polyp detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20region%20proposals%20approach%20to%20instance%20segmentation%20for%20intestinal%20polyp%20detection&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Hwang,%20Maxwell&rft.date=2023-05-01&rft.volume=14&rft.issue=5&rft.spage=1591&rft.epage=1603&rft.pages=1591-1603&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-022-01714-4&rft_dat=%3Cproquest_cross%3E2920451200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920451200&rft_id=info:pmid/&rfr_iscdi=true |