A local region proposals approach to instance segmentation for intestinal polyp detection

This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2023-05, Vol.14 (5), p.1591-1603
Hauptverfasser: Hwang, Maxwell, Qian, Yucheng, Wu, Cai, Jiang, Wei-Cheng, Wang, Da, Wei, Jingsun, Ding, Kefeng, Hwang, Kao-Shing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article designs a cascaded neural network to diagnose colonoscopic images automatically. With the limited number of labeled polyps masked in binary, the proposed detection network uses a hetero-encoder to map a colonoscopic image to an aggregated set of exemplified images as data argumentation to force the successive autoencoder to learn important features acting as a denoising autoencoder. In other words, the autoencoder denoises the transient images generated in the precedent hetero-encoder training process by auto-associating the ground truth and its variants. A hard attention model classifies the segmented image and applies a local region proposal network (RPN) to the generation and aggression of bounding boxes only on the segmented images to allow a more precise detection such that computations on bounding boxes with less information are avoided. The proposed system can outperform current complex state-of-art methods like faster-R-CNN from the experiments on endoscopic images.
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-022-01714-4