The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances

In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-06, Vol.136 (6), p.673, Article 673
Hauptverfasser: Fassari, S., Gadella, M., Nieto, L. M., Rinaldi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 673
container_title European physical journal plus
container_volume 136
creator Fassari, S.
Gadella, M.
Nieto, L. M.
Rinaldi, F.
description In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution - λ δ ( x - x 0 ) for any fixed value of the magnitude of the coupling constant. We also investigate the λ -dependence of both eigenvalues for any fixed value of x 0 . Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio’s et al. monograph, perturbed by an attractive δ -distribution supported on the spherical shell of radius r 0 .
doi_str_mv 10.1140/epjp/s13360-021-01636-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920358037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920358037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f8ed47015644d891b68bde21d6a993f34b595f3fc995cbdc9a796e17948e79e63</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxosouKz7DAY8R5MmTRtvsvgPFjy4nkOaTG2WNa1JVvG9xBfw7jPZ3Qp6cy4zw3zfN_DLsmNKTinl5Az6VX8WKWOCYJJTTKhgApO9bJJTSXDBOd__Mx9msxhXZCguKZd8krllC-jetOHzwzr_CAH1OiRn1oA6j9JwbPW6wWvnAb261CLtkU4paJPcC6Cvd-x8gt3a-XNUdxtvUUw6QRykFgWIndfeQDzKDhq9jjD76dPs4epyOb_Bi7vr2_nFAhvGeMJNBZaXhBaCc1tJWouqtpBTK7SUrGG8LmTRsMZIWZjaGqlLKYCWkldQShBsmp2MuX3onjcQk1p1m-CHlyqXOWFFRVg5qMpRZUIXY4BG9cE96fCmKFFbtGqLVo1o1YBW7dAqMjir0RkHx5bYb_5_1m-LRIIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920358037</pqid></control><display><type>article</type><title>The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Fassari, S. ; Gadella, M. ; Nieto, L. M. ; Rinaldi, F.</creator><creatorcontrib>Fassari, S. ; Gadella, M. ; Nieto, L. M. ; Rinaldi, F.</creatorcontrib><description>In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution - λ δ ( x - x 0 ) for any fixed value of the magnitude of the coupling constant. We also investigate the λ -dependence of both eigenvalues for any fixed value of x 0 . Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio’s et al. monograph, perturbed by an attractive δ -distribution supported on the spherical shell of radius r 0 .</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01636-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Dirichlet problem ; Eigenvalues ; Mathematical and Computational Physics ; Mathematical functions ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum dots ; Quantum field theory ; Quantum physics ; Regular Article ; Spherical shells ; Theoretical</subject><ispartof>European physical journal plus, 2021-06, Vol.136 (6), p.673, Article 673</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f8ed47015644d891b68bde21d6a993f34b595f3fc995cbdc9a796e17948e79e63</citedby><cites>FETCH-LOGICAL-c334t-f8ed47015644d891b68bde21d6a993f34b595f3fc995cbdc9a796e17948e79e63</cites><orcidid>0000-0003-3475-7696 ; 0000-0002-0087-3042 ; 0000-0002-2849-2647 ; 0000-0001-8860-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01636-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920358037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Fassari, S.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>Nieto, L. M.</creatorcontrib><creatorcontrib>Rinaldi, F.</creatorcontrib><title>The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution - λ δ ( x - x 0 ) for any fixed value of the magnitude of the coupling constant. We also investigate the λ -dependence of both eigenvalues for any fixed value of x 0 . Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio’s et al. monograph, perturbed by an attractive δ -distribution supported on the spherical shell of radius r 0 .</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Quantum field theory</subject><subject>Quantum physics</subject><subject>Regular Article</subject><subject>Spherical shells</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM9KxDAQxosouKz7DAY8R5MmTRtvsvgPFjy4nkOaTG2WNa1JVvG9xBfw7jPZ3Qp6cy4zw3zfN_DLsmNKTinl5Az6VX8WKWOCYJJTTKhgApO9bJJTSXDBOd__Mx9msxhXZCguKZd8krllC-jetOHzwzr_CAH1OiRn1oA6j9JwbPW6wWvnAb261CLtkU4paJPcC6Cvd-x8gt3a-XNUdxtvUUw6QRykFgWIndfeQDzKDhq9jjD76dPs4epyOb_Bi7vr2_nFAhvGeMJNBZaXhBaCc1tJWouqtpBTK7SUrGG8LmTRsMZIWZjaGqlLKYCWkldQShBsmp2MuX3onjcQk1p1m-CHlyqXOWFFRVg5qMpRZUIXY4BG9cE96fCmKFFbtGqLVo1o1YBW7dAqMjir0RkHx5bYb_5_1m-LRIIG</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fassari, S.</creator><creator>Gadella, M.</creator><creator>Nieto, L. M.</creator><creator>Rinaldi, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3475-7696</orcidid><orcidid>https://orcid.org/0000-0002-0087-3042</orcidid><orcidid>https://orcid.org/0000-0002-2849-2647</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></search><sort><creationdate>20210601</creationdate><title>The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances</title><author>Fassari, S. ; Gadella, M. ; Nieto, L. M. ; Rinaldi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f8ed47015644d891b68bde21d6a993f34b595f3fc995cbdc9a796e17948e79e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Quantum field theory</topic><topic>Quantum physics</topic><topic>Regular Article</topic><topic>Spherical shells</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassari, S.</creatorcontrib><creatorcontrib>Gadella, M.</creatorcontrib><creatorcontrib>Nieto, L. M.</creatorcontrib><creatorcontrib>Rinaldi, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassari, S.</au><au>Gadella, M.</au><au>Nieto, L. M.</au><au>Rinaldi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>136</volume><issue>6</issue><spage>673</spage><pages>673-</pages><artnum>673</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution - λ δ ( x - x 0 ) for any fixed value of the magnitude of the coupling constant. We also investigate the λ -dependence of both eigenvalues for any fixed value of x 0 . Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio’s et al. monograph, perturbed by an attractive δ -distribution supported on the spherical shell of radius r 0 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01636-0</doi><orcidid>https://orcid.org/0000-0003-3475-7696</orcidid><orcidid>https://orcid.org/0000-0002-0087-3042</orcidid><orcidid>https://orcid.org/0000-0002-2849-2647</orcidid><orcidid>https://orcid.org/0000-0001-8860-990X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-06, Vol.136 (6), p.673, Article 673
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920358037
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Boundary conditions
Complex Systems
Condensed Matter Physics
Dirichlet problem
Eigenvalues
Mathematical and Computational Physics
Mathematical functions
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum dots
Quantum field theory
Quantum physics
Regular Article
Spherical shells
Theoretical
title The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Schr%C3%B6dinger%20particle%20on%20the%20half-line%20with%20an%20attractive%20%CE%B4-interaction:%20bound%20states%20and%20resonances&rft.jtitle=European%20physical%20journal%20plus&rft.au=Fassari,%20S.&rft.date=2021-06-01&rft.volume=136&rft.issue=6&rft.spage=673&rft.pages=673-&rft.artnum=673&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01636-0&rft_dat=%3Cproquest_cross%3E2920358037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920358037&rft_id=info:pmid/&rfr_iscdi=true