The Schrödinger particle on the half-line with an attractive δ-interaction: bound states and resonances

In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-06, Vol.136 (6), p.673, Article 673
Hauptverfasser: Fassari, S., Gadella, M., Nieto, L. M., Rinaldi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we provide a detailed description of the eigenvalue E D ( x 0 ) ≤ 0 (respectively, E N ( x 0 ) ≤ 0 ) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution - λ δ ( x - x 0 ) for any fixed value of the magnitude of the coupling constant. We also investigate the λ -dependence of both eigenvalues for any fixed value of x 0 . Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio’s et al. monograph, perturbed by an attractive δ -distribution supported on the spherical shell of radius r 0 .
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-021-01636-0